算法提高 金属采集_树形dp

算法提高 金属采集

时间限制:1.0s   内存限制:256.0MB

问题描述

人类在火星上发现了一种新的金属!这些金属分布在一些奇怪的地方,不妨叫它节点好了。一些节点之间有道路相连,所有的节点和道路形成了一棵树。一共有 n 个节点,这些节点被编号为 1~n 。人类将 k 个机器人送上了火星,目的是采集这些金属。这些机器人都被送到了一个指定的着落点, S 号节点。每个机器人在着落之后,必须沿着道路行走。当机器人到达一个节点时,它会采集这个节点蕴藏的所有金属矿。当机器人完成自己的任务之后,可以从任意一个节点返回地球。当然,回到地球的机器人就无法再到火星去了。我们已经提前测量出了每条道路的信息,包括它的两个端点 x 和 y,以及通过这条道路需要花费的能量 w 。我们想花费尽量少的能量采集所有节点的金属,这个任务就交给你了。

输入格式

第一行包含三个整数 n, S 和 k ,分别代表节点个数、着落点编号,和机器人个数。

接下来一共 n-1 行,每行描述一条道路。一行含有三个整数 x, y 和 w ,代表在 x 号节点和 y 号节点之间有一条道路,通过需要花费 w 个单位的能量。所有道路都可以双向通行。

输出格式

输出一个整数,代表采集所有节点的金属所需要的最少能量。

样例输入

6 1 3
1 2 1
2 3 1
2 4 1000
2 5 1000
1 6 1000

样例输出

3004

样例说明

所有机器人在 1 号节点着陆。

第一个机器人的行走路径为 1->6 ,在 6 号节点返回地球,花费能量为1000。

第二个机器人的行走路径为 1->2->3->2->4 ,在 4 号节点返回地球,花费能量为1003。

第一个机器人的行走路径为 1->2->5 ,在 5 号节点返回地球,花费能量为1001。

数据规模与约定

本题有10个测试点。

对于测试点 1~2 , n <= 10 , k <= 5 。

对于测试点 3 , n <= 100000 , k = 1 。

对于测试点 4 , n <= 1000 , k = 2 。

对于测试点 5~6 , n <= 1000 , k <= 10 。

对于测试点 7~10 , n <= 100000 , k <= 10 。

道路的能量 w 均为不超过 1000 的正整数。

解题思路: 

如果没做过树形dp的可以先做poj2342,大体思路跟那个很像,不过一个点可以放多个机器人。

这样每个点就可以有0,1,2,3、、、个机器人了,就有这么多状态。

每个节点储存以这个节点为根的整个树的花费的最少能量。

然后由整棵树的根节点开始,他跟它的子节点有关系,已知需经历过所有的节点。

可以留在子节点0个--k个机器人,当0个的时候也一定要派一个机器人去,所以:

(dp[m][k]表示以m节点为根的树,来k个机器人花费的最少能量)

 dp[root][j]+=dp[tree[root].son[i].to][0]+2*tree[root].son[i].spend;//等于子节点存0个机器人+一个机器人从父节点到子节点,再从子节点到父节点(即2*cost)。
dp[root][j]=min(   dp[root][j],     dp[root][j-l] + dp[tree[root].son[i].to][l]+l*tree[root].son[i].spend      );//但子节点也可能停留0到j个机器人,所以需要循环一遍再来更新dp[root][j]的值。  我这里用min()函数报错呢,就改成if了。。。第二个dp里面有j-l,l是从0开始的,如果j从0开始,j-l就成负的了,这里要注意j那个循环要从k开始。
 
#include <iostream>
#include <cstdio>
#include <vector>
#include <queue>
#include <map>
#include <cmath>
#include <stack>
#include <cstring>
#include <algorithm>
#include <cstdlib>
#define FOR(i,x,n) for(long i=x;i<n;i++)
#define ll long long int
#define INF 0x3f3f3f3f
#define MOD 1000000007
#define MAX_N 60
#define MAX_M 1005

using namespace std;

struct node2{int to;int spend;};
//struct node2 edge;

struct node{
    int number;
    int rating;
    vector<node2> son;//编号,花费
    int father;
};
node tree[100005];
int visable[100005];
int dp[100005][12];//0表示不去,1表示去
int n,S,k;

void dfs(int root){
    visable[root]=1;
    FOR(i,0,tree[root].son.size()){
        if(!visable[tree[root].son[i].to]){
            dfs(tree[root].son[i].to);
            for(int j=k;j>=0;j--){//注意0的时候也要循环
                dp[root][j]+=dp[tree[root].son[i].to][0]+2*tree[root].son[i].spend;
                FOR(l,1,j+1){
                    if(dp[root][j-l]+dp[tree[root].son[i].to][l]+l*tree[root].son[i].spend<dp[root][j]){
                        dp[root][j]=dp[root][j-l]+dp[tree[root].son[i].to][l]+l*tree[root].son[i].spend;
                    }
                }
            }
        }

    }
}

int main()
{
    //freopen("input1.txt", "r", stdin);
    //freopen("data.out", "w", stdout);
    int t1,t2,t3;
    scanf("%d %d %d",&n,&S,&k);
    memset(visable,0,sizeof(visable));
    memset(dp,0,sizeof(dp));
    FOR(i,1,n){
        scanf("%d %d %d",&t1,&t2,&t3);
        node2 t={t2,t3};
        node2 tt={t1,t3};
        tree[t1].son.push_back(t);
        tree[t2].son.push_back(tt);
    }
    dfs(S);
    printf("%d",dp[S][k]);
    //fclose(stdin);
    //fclose(stdout);
    return 0;
}
时间: 2024-10-11 01:00:21

算法提高 金属采集_树形dp的相关文章

算法笔记_166:算法提高 金属采集(Java)

目录 1 问题描述 2 解决方案   1 问题描述 问题描述 人类在火星上发现了一种新的金属!这些金属分布在一些奇怪的地方,不妨叫它节点好了.一些节点之间有道路相连,所有的节点和道路形成了一棵树.一共有 n 个节点,这些节点被编号为 1~n .人类将 k 个机器人送上了火星,目的是采集这些金属.这些机器人都被送到了一个指定的着落点, S 号节点.每个机器人在着落之后,必须沿着道路行走.当机器人到达一个节点时,它会采集这个节点蕴藏的所有金属矿.当机器人完成自己的任务之后,可以从任意一个节点返回地球

加分二叉树_解题报告_SSL1033_2003年分区联赛提高组之三_树形dp

Description 设一个n个节点的二叉树tree的中序遍历为(l,2,3,-,n),其中数字1,2,3,-,n为节点编号.每个节点都有一个分数(均为正整数),记第j个节点的分数为di,tree及它的每个子树都有一个加分,任一棵子树subtree(也包含tree本身)的加分计算方法如下: subtree的左子树的加分× subtree的右子树的加分+subtree的根的分数 若某个子树为主,规定其加分为1,叶子的加分就是叶节点本身的分数.不考虑它的空 子树. 试求一棵符合中序遍历为(1,2,

蓝桥杯 算法拔高 金属采集 [ 树形dp 经典 ]

传送门 算法提高 金属采集 时间限制:1.0s   内存限制:256.0MB 锦囊1 锦囊2 锦囊3 问题描述 人类在火星上发现了一种新的金属!这些金属分布在一些奇怪的地方,不妨叫它节点好了.一些节点之间有道路相连,所有的节点和道路形成了一棵树.一共有 n 个节点,这些节点被编号为 1~n .人类将 k 个机器人送上了火星,目的是采集这些金属.这些机器人都被送到了一个指定的着落点, S 号节点.每个机器人在着落之后,必须沿着道路行走.当机器人到达一个节点时,它会采集这个节点蕴藏的所有金属矿.当机

BZOJ_1060_时态同步_树形DP

题意:http://www.lydsy.com/JudgeOnline/problem.php?id=1060 分析:水水的树形DP. 用儿子的最大值更新父亲,边更新边累加ans. 代码: #include <stdio.h> #include <string.h> #include <algorithm> using namespace std; #define N 1000010 #define LL long long int head[N],to[N<&l

BZOJ_4726_[POI2017]Sabota?_树形DP

Description 某个公司有n个人, 上下级关系构成了一个有根树.其中有个人是叛徒(这个人不知道是谁).对于一个人, 如果他 下属(直接或者间接, 不包括他自己)中叛徒占的比例超过x,那么这个人也会变成叛徒,并且他的所有下属都会变 成叛徒.你要求出一个最小的x,使得最坏情况下,叛徒的个数不会超过k. Input 第一行包含两个正整数n,k(1<=k<=n<=500000). 接下来n-1行,第i行包含一个正整数p[i+1],表示i+1的父亲是p[i+1](1<=p[i+1]&

[bzoj1812][IOI2006]riv_多叉树转二叉树_树形dp

riv bzoj-1812 IOI-2006 题目大意:给定一棵n个点树,要求在上面建立k个收集站.点有点权,边有边权,整棵树的代价是每个点的点权乘以它和它的最近的祖先收集站的距离积的和. 注释:$1\le n \le 100$,$1\le k \le 50$. 想法:显然,这是一道树形dp题.状态也非常容易... ...只不过,我们好像要枚举子集... 所以,我们这里有一个黑科技:多叉树转二叉树. 我们先把它转成二叉树,然后再进行转移即可. 状态:dp[i][j][k]表示以i为根的子树中选出

[bzoj2657][Zjoi2012]旅游 journey_ 对偶图_树形dp

旅游 bzoj-2657 Zjoi-2012 题目大意:题目链接 注释:$1\le K\le 2\cdot 10^5$. 想法:这题... 感觉和上一个题的提示有些类似,就是题目生怕你不知道这是一道对偶图的题... ... 我们先把它转成对偶图.然后我们只把分割n变形的线段两侧的点之间连边,这样就是一棵树. 紧接着我们想要遍历最多的城市,其实就是找树上直径.树形dp即可. 最后,附上丑陋的代码... ... #include <iostream> #include <cstdio>

算法进阶面试题05——树形dp解决步骤、返回最大搜索二叉子树的大小、二叉树最远两节点的距离、晚会最大活跃度、手撕缓存结构LRU

接着第四课的内容,加入部分第五课的内容,主要介绍树形dp和LRU 第一题: 给定一棵二叉树的头节点head,请返回最大搜索二叉子树的大小 二叉树的套路 统一处理逻辑:假设以每个节点为头的这棵树,他的最大搜索二叉子树是什么.答案一定在其中 第一步,列出可能性(最难部分) 1.可能来自左子树上的某课子树 2.可能来自右子树上的某课子树 3.整颗都是(左右子树都是搜索二叉树并且左子树最大小于该节点,右子树最小大于该节点) 第二步,收集信息: 1.左树最大搜索子树大小 2.右树最大搜索子树大小 3.左树

算法训练 结点选择 【树形dp】

算法训练 结点选择 时间限制:1.0s   内存限制:256.0MB 问题描述 有一棵 n 个节点的树,树上每个节点都有一个正整数权值.如果一个点被选择了,那么在树上和它相邻的点都不能被选择.求选出的点的权值和最大是多少? 输入格式 第一行包含一个整数 n . 接下来的一行包含 n 个正整数,第 i 个正整数代表点 i 的权值. 接下来一共 n-1 行,每行描述树上的一条边. 输出格式 输出一个整数,代表选出的点的权值和的最大值. 样例输入 5 1 2 3 4 5 1 2 1 3 2 4 2 5