机器学习-第一周

机器学习-第一周

这是机器学习的第一周课程,涉及到的内容较少,主要是认识一下什么是机器学习以及机器学习两个主要的分类:有监督学习和无监督学习。另外,通过一个最基础的线性回归模型来介绍机器学习中的一些相关的概念。

本周内容思维导图

Introduce

什么是机器学习?

A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T,as measured by P,if its peformance on T,as measured by P,improves with experience E.——Tom Mitchell(1998)

这是Tom Mitchell在1998年给出的较为正式的关于“机器学习”这个概念的定义(这个定义好押韵啊)。

机器学习在我们现在的生活中已经很常见,即使你自己可能还没有意识到。比如,苹果的Siri,微软的Contana,讯飞的语音识别,淘宝、京东等平台的推荐系统等等,都是机器学习在现实生活中的实际应用。我们可以将机器学习简单理解为:研究如何使计算机具备一定学习能力的领域。

监督学习&无监督学习

监督学习和无监督学习是机器学习算法的两种不同类型。

监督学习的基本思想是:我们有一些训练样本,并且这些训练样本都具有对应的标签或者“正确答案”,使用这些训练样本进行模型训练,然后将未知的数据作为模型的输入,从而得到预测的标签或者“正确答案”。监督学习最常见的两类是回归问题和分类问题。回归问题得到的模型输出是连续的,而分类问题得到的模型输出是离散的。

无监督学习的基本思想是:我们有一些训练样本,但是,这些样本并没有对应的标签,或者都具有相同的标签,机器学习算法需要在这种情况下自己找出数据中具有的某种结构,从而达到学习的目的。比如聚类算法。

简单通俗的说,监督学习是训练集有标签的学习算法,无监督学习是训练集没有标签的学习算法。监督学习是我们教计算机如何去学习,通过告诉它对应的样本对应的答案。无监督学习需要机器自己从样本中学习,分析数据中存在的关联。标签是区分监督学习和无监督学习的一个主要标志。

Linear Regression with One Variable

模型表示

监督学习的一般模型表示如下图:

我们将训练集作为学习算法的输入,然后学习算法可以从这些训练集中学习得出某种模型(得到假设函数的参数),再将未知数据作为模型的输入数据,从而得到模型求出的结果,这个结果就是机器学习算法通过学习而生成的结果。

单变量线性回归模型

线性回归是我们在高中的时候就接触过的知识,但是在当时也是只是了解,并没有过多的认识。

维基百科对线性回归的定义如下:

在统计学中,线性回归(Linear regression)是利用称为线性回归方程的最小二乘函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析。这种函数是一个或多个称为回归系数的模型参数的线性组合。只有一个自变量的情况称为简单回归,大于一个自变量情况的叫做多元回归。

在本周课程中,用于房价预测的单变量线性回归模型的函数表示就是一个一元一次函数,该函数中包含两个未知参数,也是需要求解的模型参数。

代价函数

代价函数可以用来评判一个模型对训练数据的拟合程度,特别是在线性回归模型中,它是一个关于代求解参数的函数。与线性回归模型中的假设函数不同,假设函数是关于训练集中训练样本特征的函数。代价函数的表示如下图所示:

每组参数都可以得到某个具体的模型,但是一般的,模型预测出来的结果和实际结果都存在一定的误差,将所有的差值的平方累加起来,再进行一些修正(1/2m),就是这组参数对应的代价。

梯度下降算法

梯度下降算法是一种用来求解模型参数得方法,其目标是最小化代价函数。梯度下降算法的定义如下图所示:

梯度下降算法每次迭代时,修改代价函数的参数(也就是Θ0和Θ1),从而希望达到最小化代价函数的目的。

线性代数基础

很基础的线性代数知识,找本教材复习一下就可以。

时间: 2024-12-09 11:11:17

机器学习-第一周的相关文章

中国mooc北京理工大学机器学习第一周(二)

---恢复内容开始--- 今天学习第一周的第二课时:降维. 一.PCA主成分分析 主成分分析(Principal Component Analysis,PCA),是一种统计方法,直观来讲是把数据按照weights来筛选出主成分消除(或者隐蔽)不太重要的方面,使得高纬度数据投射到低维度. 直观来讲是应用了统计学上方差和协方差的知识,若协方差越接近1则表示A,B越接近:反之,若等于零则无关. 这里可以理解在一个高纬度角度(n维空间)去找一个角度使得从你这个角度看过去很多cov(A,B)很小的数值为零

中国mooc北京理工大学机器学习第一周(一)

从今天开始跟着北理工的老师走一遍sklearn,在这里做笔记. 一.聚类 1.K-Means方法 先贴代码,所有数据的下载地址:http://pan.baidu.com/s/1hrO5NW4 import numpy as np from sklearn.cluster import KMeans def loadData(filePath):#def一个读取数据的loadData fr = open(filePath,'r+') lines = fr.readlines() retData =

中国mooc北京理工大学机器学习第一周(三)

三.基于聚类的整图分割 需要利用PIL进行图片处理,在anaconda安装的时候提示PIL只能用在py26,搜索知,可以conda install pillow 即可. def loadData(filePath): f = open(filePath,'rb') data = [] img = image.open(f) m,n = img.size for i in range(m): for j in range(n): x,y,z = img.getpixel((i,j)) #getpi

斯坦福机器学习第一周

一.监督学习和无监督学习 1.监督学习,就是人们常说的分类,通过已有的训练样本(即已知数据以及其对应的输出)去训练得到一个最优模型(这个模型属于某个函数的集合,最优则表示在某个评价准则下是最佳的),再利用这个模型将所有的输入映射为相应的输出,对输出进行简单的判断从而实现分类的目的,也就具有了对未知数据进行分类的能力. 监督学习中可以通过分类预测,也可以通过线性回归来预测. 如果目标变量是离散型,如是 / 否 . 1/2/3 . ― 冗或者红 / 黄 / 黑 等 ,则可以选择分类器算法; 如果目标

机器学习001 deeplearning.ai 深度学习课程 Neural Networks and Deep Learning 第一周总结

Deep Learning Specialization 吴恩达老师最近在coursera上联合deeplearning.ai 推出了有关深度学习的一系列课程,相对于之前的machine learning课程,这次的课程更加实用,作业语言也有matlab改为了python从而更加贴合目前的趋势.在此将对这个系列课程做一个学习笔记. 而这次的Deep Learning Specialization分为五门课程,分别为:Neural Networks and Deep Learning,Improv

【吴恩达课后测验】Course 1 - 神经网络和深度学习 - 第一周测验【中英】

[吴恩达课后测验]Course 1 - 神经网络和深度学习 - 第一周测验[中英] 第一周测验 - 深度学习简介 和"AI是新电力"相类似的说法是什么? [ ?]AI为我们的家庭和办公室的个人设备供电,类似于电力. [ ?]通过"智能电网",AI提供新的电能. [?]AI在计算机上运行,??并由电力驱动,但是它正在让以前的计算机不能做的事情变为可能. [★]就像100年前产生电能一样,AI正在改变很多的行业. 请注意: 吴恩达在视频中表达了同样的观点. 哪些是深度学

吴恩达深度学习课程第一课 — 神经网络与深度学习 — 第一周练习

课程一 - 神经网络和深度学习 第一周 - 深度学习简介 第 1 题 “人工智能是新电力”这个比喻指的是什么? A.人工智能为我们的家庭和办公室的个人设备供电,类似于电力. B.通过“智能电网”,人工智能正在传递新一波的电力. C.人工智能在计算机上运行,因此由电力驱动,但它让计算机做以前不可能做的事情. D.与100年前开始的电力类似,人工智能正在改变多个行业. 第 2 题 以下哪些是最近深度学习开始崛起的原因?(选2个答案) A.我们拥有了更多的计算能力 B.神经网络是一个崭新的领域. C.

20155336 2016-2017-2《JAVA程序设计》第一周学习总结

# 20155336  2016-2017-2<JAVA程序设计>第1周学习总结 ## 教材学习内容总结 开学的第一周,带着些许的欣喜和好奇,听完了老师的第一堂课.说心里话学习JAVA仿佛观看一部英文影视作品一样头疼, 因为总会有许许多多相似的名字让你记得晕头转向.JAVA也是一样,什么JVM啊JRE啊JDK啊 (/(ㄒoㄒ)/~~)  等等一系列 的英文缩写,让人心神意乱~~但总体上对JAVA有了一个初步的了解.通过课上老师的介绍以及课下对JAVA书第一章的浏览, 我简单的了解了JAVA艰辛

20145216 史婧瑶《信息安全系统设计基础》第一周学习总结

20145216 <信息安全系统设计基础>第一周学习总结 教材学习内容总结 Linux基础 1.ls命令 ls或ls .显示是当前目录的内容,这里“.”就是参数,表示当前目录,是缺省的可以省略.我们可以用ls -a .显示当前目录中的所有内容,包括隐藏文件和目录.其中“-a” 就是选项,改变了显示的内容.如图所示: 2.man命令 man命令可以查看帮助文档,如 man man : 若在shell中输入 man+数字+命令/函数 即可以查到相关的命令和函数:若不加数字,那man命令默认从数字较