【美菜网】in和exist区别

select * from A
where id in(select id from B)

以上查询使用了in语句,in()只执行一次,它查出B表中的所有id字段并缓存起来.之后,检查A表的id是否与B表中的id相等,如果相等则将A表的记录加入结果集中,直到遍历完A表的所有记录.
它的查询过程类似于以下过程

List resultSet=[];
Array A=(select * from A);
Array B=(select id from B);

for(int i=0;i<A.length;i++) {
   for(int j=0;j<B.length;j++) {
      if(A[i].id==B[j].id) {
         resultSet.add(A[i]);
         break;
      }
   }
}
return resultSet;

可以看出,当B表数据较大时不适合使用in(),因为它会B表数据全部遍历一次.
如:A表有10000条记录,B表有1000000条记录,那么最多有可能遍历10000*1000000次,效率很差.
再如:A表有10000条记录,B表有100条记录,那么最多有可能遍历10000*100次,遍历次数大大减少,效率大大提升.

结论:in()适合B表比A表数据小的情况

select a.* from A a 
where exists(select 1 from B b where a.id=b.id)

以上查询使用了exists语句,exists()会执行A.length次,它并不缓存exists()结果集,因为exists()结果集的内容并不重要,重要的是结果集中是否有记录,如果有则返回true,没有则返回false.
它的查询过程类似于以下过程

List resultSet=[];
Array A=(select * from A)

for(int i=0;i<A.length;i++) {
   if(exists(A[i].id) {    //执行select 1 from B b where b.id=a.id是否有记录返回
       resultSet.add(A[i]);
   }
}
return resultSet;

当B表比A表数据大时适合使用exists(),因为它没有那么遍历操作,只需要再执行一次查询就行.
如:A表有10000条记录,B表有1000000条记录,那么exists()会执行10000次去判断A表中的id是否与B表中的id相等.
如:A表有10000条记录,B表有100000000条记录,那么exists()还是执行10000次,因为它只执行A.length次,可见B表数据越多,越适合exists()发挥效果.
再如:A表有10000条记录,B表有100条记录,那么exists()还是执行10000次,还不如使用in()遍历10000*100次,因为in()是在内存里遍历比较,而exists()需要查询数据库,我们都知道查询数据库所消耗的性能更高,而内存比较很快.

结论:exists()适合B表比A表数据大的情况

当A表数据与B表数据一样大时,in与exists效率差不多,可任选一个使用.

比如在Northwind数据库中有一个查询为
SELECT c.CustomerId,CompanyName FROM Customers c
WHERE EXISTS(
SELECT OrderID FROM Orders o WHERE o.CustomerID=c.CustomerID) 
这里面的EXISTS是如何运作呢?子查询返回的是OrderId字段,可是外面的查询要找的是CustomerID和CompanyName字段,这两个字段肯定不在OrderID里面啊,这是如何匹配的呢?

EXISTS用于检查子查询是否至少会返回一行数据,该子查询实际上并不返回任何数据,而是返回值True或False
EXISTS 指定一个子查询,检测 行 的存在。

语法: EXISTS subquery
参数: subquery 是一个受限的 SELECT 语句 (不允许有 COMPUTE 子句和 INTO 关键字)。
结果类型: Boolean 如果子查询包含行,则返回 TRUE ,否则返回 FLASE 。

例表A:TableIn 例表B:TableEx

(一). 在子查询中使用 NULL 仍然返回结果集
select * from TableIn where exists(select null)
等同于: select * from TableIn
 
(二). 比较使用 EXISTS 和 IN 的查询。注意两个查询返回相同的结果。
select * from TableIn where exists(select BID from TableEx where BNAME=TableIn.ANAME)
select * from TableIn where ANAME in(select BNAME from TableEx)

(三). 比较使用 EXISTS 和 = ANY 的查询。注意两个查询返回相同的结果。
select * from TableIn where exists(select BID from TableEx where BNAME=TableIn.ANAME)
select * from TableIn where ANAME=ANY(select BNAME from TableEx)

NOT EXISTS 的作用与 EXISTS 正好相反。如果子查询没有返回行,则满足了 NOT EXISTS 中的 WHERE 子句。

结论:
EXISTS(包括 NOT EXISTS )子句的返回值是一个BOOL值。 EXISTS内部有一个子查询语句(SELECT ... FROM...), 我将其称为EXIST的内查询语句。其内查询语句返回一个结果集。 EXISTS子句根据其内查询语句的结果集空或者非空,返回一个布尔值。

一种通俗的可以理解为:将外查询表的每一行,代入内查询作为检验,如果内查询返回的结果取非空值,则EXISTS子句返回TRUE,这一行行可作为外查询的结果行,否则不能作为结果。

分析器会先看语句的第一个词,当它发现第一个词是SELECT关键字的时候,它会跳到FROM关键字,然后通过FROM关键字找到表名并把表装入内存。接着是找WHERE关键字,如果找不到则返回到SELECT找字段解析,如果找到WHERE,则分析其中的条件,完成后再回到SELECT分析字段。最后形成一张我们要的虚表。
WHERE关键字后面的是条件表达式。条件表达式计算完成后,会有一个返回值,即非0或0,非0即为真(true),0即为假(false)。同理WHERE后面的条件也有一个返回值,真或假,来确定接下来执不执行SELECT。
分析器先找到关键字SELECT,然后跳到FROM关键字将STUDENT表导入内存,并通过指针找到第一条记录,接着找到WHERE关键字计算它的条件表达式,如果为真那么把这条记录装到一个虚表当中,指针再指向下一条记录。如果为假那么指针直接指向下一条记录,而不进行其它操作。一直检索完整个表,并把检索出来的虚拟表返回给用户。EXISTS是条件表达式的一部分,它也有一个返回值(true或false)。

在插入记录前,需要检查这条记录是否已经存在,只有当记录不存在时才执行插入操作,可以通过使用 EXISTS 条件句防止插入重复记录。
INSERT INTO TableIn (ANAME,ASEX) 
SELECT top 1 ‘张三‘, ‘男‘ FROM TableIn
WHERE not exists (select * from TableIn where TableIn.AID = 7)

EXISTS与IN的使用效率的问题,通常情况下采用exists要比in效率高,因为IN不走索引,但要看实际情况具体使用:
IN适合于外表大而内表小的情况;EXISTS适合于外表小而内表大的情况。

时间: 2024-10-04 09:09:24

【美菜网】in和exist区别的相关文章

【美菜网】on、where以及having的区别

数据库在通过连接两张或多张表来返回记录时,都会生成一张中间的临时表,然后再将这张临时表返回给用户. 在使用left jion时,on和where条件的区别如下: 1. on条件是在生成临时表时使用的条件,它不管on中的条件是否为真,都会返回左边表中的记录. 2.where条件是在临时表生成好后,再对临时表进行过滤的条件.这时已经没有left join的含义(必须返回左边表的记录)了,条件不为真的就全部过滤掉. 假设有两张表: 表1:tab2 id size 1 10 2 20 3 30 表2:t

【美菜网】PostgreSQL与MySQL比较

MySQL相对于PostgreSQL的劣势: MySQL PostgreSQL 最重要的引擎InnoDB很早就由Oracle公司控制.目前整个MySQL数据库都由Oracle控制. BSD协议,没有被大公司垄断. 对复杂查询的处理较弱,查询优化器不够成熟 很强大的查询优化器,支持很复杂的查询处理. 只有一种表连接类型:嵌套循环连接(nested-loop),不支持排序-合并连接(sort-merge join)与散列连接(hash join). 都支持 性能优化工具与度量信息不足 提供了一些性能

初识scrapy,美空网图片爬取实战

这俩天研究了下scrapy爬虫框架,遂准备写个爬虫练练手.平时做的较多的事情是浏览图片,对,没错,就是那种艺术照,我骄傲的认为,多看美照一定能提高审美,并且成为一个优雅的程序员.O(∩_∩)O~ 开个玩笑,那么废话不多说,切入正题吧,写一个图片爬虫. 设计思路:爬取目标为美空网模特照片,利用CrawlSpider提取每张照片的url地址,并将提取的图片url写入一个静态html文本作为存储,打开即可查看图片. 我的环境是win8.1, python2.7+Scrapy 0.24.4,如何配环境我

Python爬虫入门教程 3-100 美空网数据爬取

简介 从今天开始,我们尝试用2篇博客的内容量,搞定一个网站叫做"美空网"网址为:http://www.moko.cc/, 这个网站我分析了一下,我们要爬取的图片在 下面这个网址 http://www.moko.cc/post/1302075.html 然后在去分析一下,我需要找到一个图片列表页面是最好的,作为一个勤劳的爬虫coder,我找到了这个页面 http://www.moko.cc/post/da39db43246047c79dcaef44c201492d/list.html 列

Python爬虫入门教程 4-100 美空网未登录图片爬取

简介 上一篇写的时间有点长了,接下来继续把美空网的爬虫写完,这套教程中编写的爬虫在实际的工作中可能并不能给你增加多少有价值的技术点,因为它只是一套入门的教程,老鸟你自动绕过就可以了,或者带带我也行. 爬虫分析 首先,我们已经爬取到了N多的用户个人主页,我通过链接拼接获取到了 http://www.moko.cc/post/da39db43246047c79dcaef44c201492d/list.html 在这个页面中,咱们要找几个核心的关键点,发现平面拍摄点击进入的是图片列表页面. 接下来开始

我在“美菜”读的书

    今天,翻完<分布式系统原理介绍.ppt>了最后一页,感觉有点失落:又一本好书看完了(不知,大伙儿是否也是这样的).惆怅中,才发现,自去年10月,进入美菜后,7个月的时间,已经看完了6-7本书了,这个战绩绝对是之前无法想像的,但是它就是发生了.  说起,看书这事儿吧,也前吧,也不爱,觉得程序员,就应该看代码,撸代码,还是受到前任领导(我们都叫他:惠丰)与 前任同事(我们都叫他:大师)的影响. 与前任领导,一起工作了8-9年,见证了他,因为读书而优秀,因为优秀而读书. 大师,有钱而优秀的大

Python爬虫入门【4】:美空网未登录图片爬取

美空网未登录图片----简介 上一篇写的时间有点长了,接下来继续把美空网的爬虫写完,这套教程中编写的爬虫在实际的工作中可能并不能给你增加多少有价值的技术点,因为它只是一套入门的教程,老鸟你自动绕过就可以了,或者带带我也行. 美空网未登录图片----爬虫分析 首先,我们已经爬取到了N多的用户个人主页,我通过链接拼接获取到了 http://www.moko.cc/post/da39db43246047c79dcaef44c201492d/list.html 在这个页面中,咱们要找几个核心的关键点,发

VPN和网游加速器的区别

VPN:VPN连接后,不仅国内的网站能访问,国外的网站也能够访问.因为IP发生了变化. 网游加速器:是不会改变IP地址的.也正因为这样,它是无法访问facebook这些国外网站的.只有VPN才行. 因为VPN设置服务器地址时,你的IP地址也是跟着这个服务器在改变的.如果服务器地址时美国的,那么IP就成美国了.facebook, twitter这些社交网站就能访问了,国外游戏也 能晚了.也正因为这样,VPN能加速国外网络使游戏降低ping值,所以VPN跟网游加速器都有对游戏的加速的原理. 为了方便

in 和 exist 区别 (转)

select * from Awhere id in(select id from B) 以上查询使用了in语句,in()只执行一次,它查出B表中的所有id字段并缓存起来.之后,检查A表的id是否与B表中的id相等,如果相等则将A表的记录加入结果集中,直到遍历完A表的所有记录.它的查询过程类似于以下过程 List resultSet=[];Array A=(select * from A);Array B=(select id from B); for(int i=0;i<A.length;i+