UVA 11971 - Polygon(概率+几何概型)

UVA 11971 - Polygon

题目链接

题意:给一条长为n的线段,要选k个点,分成k + 1段,问这k + 1段能组成k + 1边形的概率

思路:对于n边形而言,n - 1条边的和要大于另外那条边,然后先考虑3边和4边形的情况,根据公式在坐标系中画出来的图,总面积为x,而不满足的面积被分成几块,每块面积为x/2k,然后在观察发现一共是k
+ 1块,所以符合的面积为x?x?(k+1)/2k,这样一来除以总面积就得到了概率1?(k+1)/2k

代码:

#include <cstdio>
#include <cstring>

const int N = 55;
typedef long long ll;

int t, k;
ll mi[N];

ll gcd(ll a, ll b) {
    while (b) {
	ll tmp = b;
	b = a % b;
	a = tmp;
    }
    return a;
}

int main() {
    mi[0] = 1;
    for (int i = 1; i <= 50; i++)
	mi[i] = mi[i - 1] * 2;
    scanf("%d", &t);
    int cas = 0;
    while (t--) {
	scanf("%*d%d", &k);
	printf("Case #%d: ", ++cas);
	if (k == 1) {
	    printf("0/1\n");
	    continue;
	}
	ll zi = mi[k] - k - 1;
	ll mu = mi[k];
	ll d = gcd(zi, mu);
	printf("%lld/%lld\n", zi / d, mu / d);
    }
    return 0;
}

UVA 11971 - Polygon(概率+几何概型)

时间: 2024-12-28 17:52:24

UVA 11971 - Polygon(概率+几何概型)的相关文章

uva 11971 Polygon

https://vjudge.net/problem/UVA-11971 有一根长度为n的木条,随机选k个位置把它们切成k+1段小木条.求这些小木条能组成一个多边形的概率. 将木条看做一个圆,线上切k刀等价于圆上切k+1刀 如果能组成多边形,每一段木条的长度都要<圆周长/2 反过来,如果不能组成多边形,有且仅有一段长度>=圆周长/2 如图所示,第一刀可以随便切,接下来的每一刀都要在第一刀所在的那个半圆上 概率=(1/2)^k 每一个切点处,都可以断开成为线,共有k+1种断法 所以不能构成多边形

uva 11971 - Polygon(线性规划)

题目连接:uva 11971 - Polygon 题目大意:给定一个长度为N的线段,要求切K刀,分成K+1个线段,问能组成K+1边形的概率. 解题思路:K条线段能组成K边形的条件为任意一条边小于其他所有边的和,因为是求概率,所以和N无关. 根据高中线性规划的知识,以二维为例: 所以有ans=2K?K?12K #include <cstdio> #include <cstring> #include <algorithm> using namespace std; typ

UVA 11971 - Polygon 数学概率

                                    Polygon  John has been given a segment of lenght N, however he needs a polygon. In order to create a polygonhe has cut given segment K times at random positions (uniformly distributed cuts). Now he has K + 1much sh

UVA 11346 Probability (几何概型, 积分)

题目链接:option=com_onlinejudge&Itemid=8&page=show_problem&problem=2321">https://uva.onlinejudge.org/index.php? option=com_onlinejudge&Itemid=8&page=show_problem&problem=2321 题目大意:在A是一个点集 A = {(x, y) | x ∈[-a, a],y∈[-b, b]},求取出

集训第六周 数学概念与方法 UVA 11722 几何概型

---恢复内容开始--- http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=31471 题意,两辆火车,分别会在[t1,t2],[s1,s2]的时间段停留在同一个站点w分钟,问两辆火车能够在这个站点相遇的概率. 思路,枚举每一种情况,把两辆火车的相交区间画出来,然后求都在这个区间的概率 #include"iostream" #include"cstdio" #include"cmath&

Uva 11971 Polygon 想法

多边形的组成条件是最长边不能占边长总和的一半,将木棒想象成圆多砍一刀,然后是简单概率. Polygon Time Limit: 1000MS   Memory Limit: Unknown   64bit IO Format: %lld & %llu Submit Status Description U   - Polygon Time Limit: 1 sec Memory Limit: 32 MB John has been given a segment of lenght N, how

数学概念——A 几何概型

You are going from Dhaka to Chittagong by train and you came to know one of your old friends is going from city Chittagong to Sylhet. You also know that both the trains will have a stoppage at junction Akhaura at almost same time. You wanted to see y

UVa 11971 Polygon (数学,转化)

题意:一根长度为n的木条,随机选k个位置将其切成k+1段,问这k+1段能组成k+1条边的多边形的概率. 析:这个题,很明显和 n 是没有任何关系的,因为无论 n 是多少那切多少段都可以,只与切多少段有关.然后我们要转化一下,不能直接做,因为不好做. 转化为一个圆上选 m+1 个点,能不能组成多边形,很容易知道如果一个边大于一半圆的周长,那就组不成多边形.然后位置是随便选的,概率就是1, 然后其他 m-1 个点,就只能放那一半上,每个都有1/2的概率,然后 m 个,就是1/(2^m),然后每个点都

Pocky HDU 5984(几何概型-期望)

原题 链接 解析 设函数f(x)表示长度为x的棒截断次数的期望值. (1) 明显当x<=d时,f(x)=0; (2) 当f(x)>d时,f(x)=1+f(0~d)+f(d~x). 1表示必定要截断一次,f(0~d)表示截断一次后剩下0~d长度时的期望值,f(d~x)表示截断一次后剩下d~x长度时的期望值. 由(1)知,f(0~d)=0,关键在于求f(d~x),在长度为x的棒上截断一次,截断概率均为1/x,因此f(d~x)=(1/x)*∫(x,d)f(x)dx. 有f(x)=1+(1/x)*∫(