在STL中,最常用的就是容器,最常用的容器就是vector了。vector类似内置数组。但是数组是静态的,一旦配置就不能再变大小,而容器的大小事容器本身自己调整的。在实现容器的代码中可以看到,容器可以动态增大,但是不能动态减小。
容器有已用空间和可用空间,已用空间就是容器已经使用了的空间,可用空间就是指vector的大小capacity。
容器是占用一段连续线性空间,所以容器的迭代器就等价于原生态的指针(这是造成我一直以为迭代器就是指针的原因),vector迭代器类型是RandomAccessIterator类型。vector的实现依赖于前面内存的配置和内存的初始化,以及迭代器,看学习vector代码可以帮助我们更加深入理解stl_alloc.h、stl_uninitialized.h、stl_iterator.h。
下面附上代码:
G++ 2.91.57,cygnus\cygwin-b20\include\g++\stl_vector.h 完整列表 /* * * Copyright (c) 1994 * Hewlett-Packard Company * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Hewlett-Packard Company makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * * * Copyright (c) 1996 * Silicon Graphics Computer Systems, Inc. * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Silicon Graphics makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. */ /* NOTE: This is an internal header file, included by other STL headers. * You should not attempt to use it directly. */ #ifndef __SGI_STL_INTERNAL_VECTOR_H #define __SGI_STL_INTERNAL_VECTOR_H __STL_BEGIN_NAMESPACE #if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32) #pragma set woff 1174 #endif template <class T, class Alloc = alloc> // alloc为默认空间配置器 class vector { public: // 以下表示 (1),(2),(3),(4),(5),代表 iterator_traits<I> 所服务的5个型别。 typedef T value_type; // (1) typedef value_type* pointer; // (2) typedef const value_type* const_pointer; typedef const value_type* const_iterator; typedef value_type& reference; // (3) typedef const value_type& const_reference; typedef size_t size_type; typedef ptrdiff_t difference_type; // (4) // 以下,由于vector 所维护的是一个连续性空间,所以不论其元素型別为何, // 原生指针都可以作为其迭代器而满足所有需求。 typedef value_type* iterator;//定时的是原生态指针 /* 根据上述说法,如果客端编码如下: vector<Shape>::iterator is; is 的类型其实就是Shape* 而STL 內部使用 iterator_traits<is>::reference 时,获得 Shape& 使用iterator_traits<is>::iterator_category 时,获得 random_access_iterator_tag (5) (此乃iterator_traits 针对原生态指针特化的结果) */ #ifdef __STL_CLASS_PARTIAL_SPECIALIZATION typedef reverse_iterator<const_iterator> const_reverse_iterator; typedef reverse_iterator<iterator> reverse_iterator; #else /* __STL_CLASS_PARTIAL_SPECIALIZATION */ typedef reverse_iterator<const_iterator, value_type, const_reference, difference_type> const_reverse_iterator; typedef reverse_iterator<iterator, value_type, reference, difference_type> reverse_iterator; #endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */ protected: // 空间配置器。在stl_alloc.h中定义 typedef simple_alloc<value_type, Alloc> data_allocator; /* vector采用线性连续空间存储元素 迭代器start指向使用空间的头 迭代器end指向使用空间的尾(使用空间不是全部的空间) end_of_storate 可用空间的尾 */ iterator start; iterator finish; iterator end_of_storage; void insert_aux(iterator position, const T& x); void deallocate() { if (start) //在stl_alloc.h中定义 ,根据元素类型来判断是否调用析构函数 data_allocator::deallocate(start, end_of_storage - start); } void fill_initialize(size_type n, const T& value) { start = allocate_and_fill(n, value); // 分配空间且设定初始值 finish = start + n; // 调整尾迭代器 end_of_storage = finish; // 调整迭代器。分配空间和使用空间相同 } //对外借口,我们可以使用的 public: iterator begin() { return start; }//返回迭代器,指向起始位置 const_iterator begin() const { return start; } iterator end() { return finish; }//指向可用空间尾端的迭代器 const_iterator end() const { return finish; } reverse_iterator rbegin() { return reverse_iterator(end()); } const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); } reverse_iterator rend() { return reverse_iterator(begin()); } const_reverse_iterator rend() const { return const_reverse_iterator(begin()); } //已用用空间对象的个数 size_type size() const { return size_type(end() - begin()); } //最大可以状态对象个数。 size_type(-1)转换为无符号数 size_type max_size() const { return size_type(-1) / sizeof(T); } //vector当前容量 size_type capacity() const { return size_type(end_of_storage - begin()); } //判断是否为空 bool empty() const { return begin() == end(); } //注意,重载[]是返回引用,所以可以作为左值来给容器内对象复制 reference operator[](size_type n) { return *(begin() + n); } const_reference operator[](size_type n) const { return *(begin() + n); } //默认构造函数竟然不分配空间,感觉有点怪 vector() : start(0), finish(0), end_of_storage(0) {} //以下几个构造函数(都指定大小和设置初始值都是调用 fill_initialize,在上 //面已经看到fill_initialize并不多分配空间,可见如果指定vector大小的话 //就不会再多分配空间了。 vector(size_type n, const T& value) { fill_initialize(n, value); } vector(int n, const T& value) { fill_initialize(n, value); } vector(long n, const T& value) { fill_initialize(n, value); } //T()说明需要容器内对象要有默认构造函数 explicit vector(size_type n) { fill_initialize(n, T()); } //用一个容器初始化新建的容器。新建的容器大小只是x容器使用空间的大小 vector(const vector<T, Alloc>& x) { start = allocate_and_copy(x.end() - x.begin(), x.begin(), x.end()); finish = start + (x.end() - x.begin()); end_of_storage = finish; } //使用两个迭代器区间的值来初始化vector #ifdef __STL_MEMBER_TEMPLATES template <class InputIterator> vector(InputIterator first, InputIterator last) : start(0), finish(0), end_of_storage(0) { //把start、finish、end_of_storage初始化为0 //使用push_back来添加 range_initialize(first, last, iterator_category(first)); } #else /* __STL_MEMBER_TEMPLATES */ vector(const_iterator first, const_iterator last) { size_type n = 0; distance(first, last, n);//计算两个迭代器之间的距离 start = allocate_and_copy(n, first, last);//分配空间初始化,并不多分配空间 finish = start + n; end_of_storage = finish; } #endif /* __STL_MEMBER_TEMPLATES */ ~vector() { //析构对象,在stl_construct.h定义 destroy(start, finish); deallocate(); // 释放空间 } vector<T, Alloc>& operator=(const vector<T, Alloc>& x); //调整可用空间大小至n void reserve(size_type n) { if (capacity() < n) {//如果小于n则调整,大于n直接返回 const size_type old_size = size(); iterator tmp = allocate_and_copy(n, start, finish); destroy(start, finish); deallocate(); start = tmp; finish = tmp + old_size; end_of_storage = start + n; } } // 取出vector第一个元素,是返回引用 reference front() { return *begin(); } const_reference front() const { return *begin(); } // 取出vector最后一个元素,是返回引用 reference back() { return *(end() - 1); } const_reference back() const { return *(end() - 1); } // 在容器尾添加元素 void push_back(const T& x) { if (finish != end_of_storage) { // 如果还有未用空间 construct(finish, x); // 直接初始化未用空间。 ++finish; } else // 无未用空间 insert_aux(end(), x); } //交换两个vector,只是交换了迭代器,并没有重新分配内存,所以原来的迭代器不会失效 void swap(vector<T, Alloc>& x) { __STD::swap(start, x.start); __STD::swap(finish, x.finish); __STD::swap(end_of_storage, x.end_of_storage); } //在position处插入元素x iterator insert(iterator position, const T& x) { size_type n = position - begin(); //如果插入位置正好是末尾(好像一般没这么巧吧?) if (finish != end_of_storage && position == end()) { construct(finish, x); // 直接初始化尾端内存。 ++finish; } else /* insert_aux的实现是把position后的元素都后移,然后插入。 当然了在后移之前要看一下有没有未用空间 */ insert_aux(position, x); return begin() + n; } //直接在position处插入vector对象默认值(条用默认构造函数) iterator insert(iterator position) { return insert(position, T()); } #ifdef __STL_MEMBER_TEMPLATES /* 在position处插入一段元素。 其实还是调用insert一个一个插入的,再插入过程中,移动插入位置position */ template <class InputIterator> void insert(iterator position, InputIterator first, InputIterator last){ range_insert(position, first, last, iterator_category(first)); } #else /* __STL_MEMBER_TEMPLATES */ void insert(iterator position, const_iterator first, const_iterator last); #endif /* __STL_MEMBER_TEMPLATES */ //在position处插入n个元素x void insert (iterator pos, size_type n, const T& x); void insert (iterator pos, int n, const T& x) { insert(pos, (size_type) n, x); } void insert (iterator pos, long n, const T& x) { insert(pos, (size_type) n, x); } //把容器末端元素去掉。并不返回末端元素 void pop_back() { --finish; destroy(finish); } // 将position处元素消除 iterator erase(iterator position) { /* 如果position不是末端,那么要把后面元素往前移 */ if (position + 1 != end()) copy(position + 1, finish, position); --finish; destroy(finish); return position; } //移除两个迭代器之间的元素 iterator erase(iterator first, iterator last) { //把last后的元素向前移 iterator i = copy(last, finish, first); destroy(i, finish); // 析构移动后多余的元素 finish = finish - (last - first); return first; } //调整已用空间大小 void resize(size_type new_size, const T& x) { if (new_size < size()) //如果把已用空间调小,那么直接擦除掉多余部分 erase(begin() + new_size, end()); else //已用空间变大,多出来的已用空间用x初始化 insert(end(), new_size - size(), x); } void resize(size_type new_size) { resize(new_size, T()); } // 清除全部元素。 void clear() { erase(begin(), end()); } protected: /* allocate_and_fill //功能:分配空间并初始化 ? allocate //分配空间 <stl_alloc.h> ? uninitialized_fill_n //初始化 <stl_uninitialized.h> */ iterator allocate_and_fill(size_type n, const T& x) { iterator result = data_allocator::allocate(n); // 配置空间 __STL_TRY { // 全域函式,記憶體低階工具,將result所指之未初始化空間設定初值為 x,n個 //全局函数,初始化已配置但未初始化空间 // 在 <stl_uninitialized.h>。中定义 uninitialized_fill_n(result, n, x); return result; } // "commit or rollback" 语义:如果有一个失败,则全部释放。 __STL_UNWIND(data_allocator::deallocate(result, n)); } /* allocate_and_copy //功能:分配空间并初始化 ? allocate //分配空间 <stl_alloc.h> ? uninitialized_copy //初始化 <stl_uninitialized.h> */ #ifdef __STL_MEMBER_TEMPLATES template <class ForwardIterator> iterator allocate_and_copy(size_type n, ForwardIterator first, ForwardIterator last) { iterator result = data_allocator::allocate(n);//配置空间 __STL_TRY { uninitialized_copy(first, last, result);//初始化配置空间 return result; } __STL_UNWIND(data_allocator::deallocate(result, n)); } #else /* __STL_MEMBER_TEMPLATES */ iterator allocate_and_copy(size_type n, const_iterator first, const_iterator last) { iterator result = data_allocator::allocate(n); __STL_TRY { uninitialized_copy(first, last, result); return result; } __STL_UNWIND(data_allocator::deallocate(result, n)); } #endif /* __STL_MEMBER_TEMPLATES */ /* 两个迭代器之间的元素初始化vector。根据迭代器类型来选择使用哪种初始化方式 如果是 input_iterator_tag类型迭代器,则一个一个初始化 如果是 forward_iterator_tag(包含其派生类型?),则调用 allocate_and_copy */ #ifdef __STL_MEMBER_TEMPLATES template <class InputIterator> void range_initialize(InputIterator first, InputIterator last, input_iterator_tag) { for ( ; first != last; ++first) push_back(*first); } // This function is only called by the constructor. We have to worry // about resource leaks, but not about maintaining invariants. template <class ForwardIterator> void range_initialize(ForwardIterator first, ForwardIterator last, forward_iterator_tag) { size_type n = 0; distance(first, last, n); start = allocate_and_copy(n, first, last); finish = start + n; end_of_storage = finish; } template <class InputIterator> void range_insert(iterator pos, InputIterator first, InputIterator last, input_iterator_tag); template <class ForwardIterator> void range_insert(iterator pos, ForwardIterator first, ForwardIterator last, forward_iterator_tag); #endif /* __STL_MEMBER_TEMPLATES */ }; //判断两个容器是否相等。两个容器相同位置的元素相等才相同 //equal应该是泛型算法 template <class T, class Alloc> inline bool operator==(const vector<T, Alloc>& x, const vector<T, Alloc>& y) { return x.size() == y.size() && equal(x.begin(), x.end(), y.begin()); } // lexicographical_compare泛型算法 template <class T, class Alloc> inline bool operator<(const vector<T, Alloc>& x, const vector<T, Alloc>& y) { return lexicographical_compare(x.begin(), x.end(), y.begin(), y.end()); } #ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER template <class T, class Alloc> inline void swap(vector<T, Alloc>& x, vector<T, Alloc>& y) { x.swap(y); } #endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */ //重载=号运算符 template <class T, class Alloc> vector<T, Alloc>& vector<T, Alloc>::operator=(const vector<T, Alloc>& x) { if (&x != this) { // 判断是否相同,防止自身赋值 if (x.size() > capacity()) { // 赋值对象x内容大于vector的capacity //重新开辟空间 iterator tmp = allocate_and_copy(x.end() - x.begin(), x.begin(), x.end()); destroy(start, finish); deallocate(); start = tmp; end_of_storage = start + (x.end() - x.begin()); } else if (size() >= x.size()) { // vector空间够用 iterator i = copy(x.begin(), x.end(), begin()); destroy(i, finish); } else { copy(x.begin(), x.begin() + size(), start); uninitialized_copy(x.begin() + size(), x.end(), finish); } finish = start + x.size(); } return *this; } //在指定位置插入元素 template <class T, class Alloc> void vector<T, Alloc>::insert_aux(iterator position, const T& x) { if (finish != end_of_storage) { // 还有可用空间 // 后移最后一个元素 construct(finish, *(finish - 1)); ++finish; // x_copy好像没啥用 T x_copy = x; //后移那些元素 copy_backward(position, finish - 2, finish - 1); *position = x_copy; } else { // 无可用空间情况 const size_type old_size = size(); const size_type len = old_size != 0 ? 2 * old_size : 1; /* 重新开辟空间。如果原有空间为0,则重新开辟空间为1 否则新开辟空间为原有空间的2倍 。 */ iterator new_start = data_allocator::allocate(len); // 配置空间 iterator new_finish = new_start; __STL_TRY { // 原有vector内容拷贝到新开辟的空间 new_finish = uninitialized_copy(start, position, new_start); // 为新元素设定初值 construct(new_finish, x); ++new_finish; //将旧vector未用空间的内容页拷贝过来。好像没啥用处啊? new_finish = uninitialized_copy(position, finish, new_finish); } # ifdef __STL_USE_EXCEPTIONS catch(...) { // "commit or rollback" 若失败则全部回滚。 destroy(new_start, new_finish); data_allocator::deallocate(new_start, len); throw; } # endif /* __STL_USE_EXCEPTIONS */ // 析构和释放 vector destroy(begin(), end()); deallocate(); // 调整迭代器 start = new_start; finish = new_finish; end_of_storage = new_start + len; } } //在position处插入n个元素,初值为x template <class T, class Alloc> void vector<T, Alloc>::insert(iterator position, size_type n, const T& x) { if (n != 0) { // n=0的话无意义 //可用空间够用 if (size_type(end_of_storage - finish) >= n) { // 定义x_copy=x;看起来好像没啥用,是不是多线程或者担心引用会修改原来的值? T x_copy = x; // position处到尾端共有多少个元素 const size_type elems_after = finish - position; iterator old_finish = finish; /* 要判断 position处到尾端元素个数是否大于新插入元素个数n 因为在finish之前的内存是已经初始化的,finishing之后的内存是为构建的 */ if (elems_after > n) { //position处到尾端元素个数大于新插入元素个数n uninitialized_copy(finish - n, finish, finish); finish += n; // 將vector 尾端標記後移 copy_backward(position, old_finish - n, old_finish); fill(position, position + n, x_copy); // 從安插點開始填入新值 } else { //position处到尾端元素个数小于新插入元素个数n uninitialized_fill_n(finish, n - elems_after, x_copy); finish += n - elems_after; uninitialized_copy(position, old_finish, finish); finish += elems_after; fill(position, old_finish, x_copy); } } else { /* 空间不够用,则开辟新空间。新空间大小不是简单的乘以2,因为乘以2也 未必容得下新加入的元素 */ const size_type old_size = size(); const size_type len = old_size + max(old_size, n); iterator new_start = data_allocator::allocate(len); iterator new_finish = new_start; __STL_TRY { new_finish = uninitialized_copy(start, position, new_start); new_finish = uninitialized_fill_n(new_finish, n, x); new_finish = uninitialized_copy(position, finish, new_finish); } # ifdef __STL_USE_EXCEPTIONS catch(...) { destroy(new_start, new_finish); data_allocator::deallocate(new_start, len); throw; } # endif /* __STL_USE_EXCEPTIONS */ destroy(start, finish); deallocate(); start = new_start; finish = new_finish; end_of_storage = new_start + len; } } } //在position处插入两个迭代器之间的元素。迭代器不同,实现方法不同,上面已经讲过。 #ifdef __STL_MEMBER_TEMPLATES template <class T, class Alloc> template <class InputIterator> void vector<T, Alloc>::range_insert(iterator pos, InputIterator first, InputIterator last, input_iterator_tag) { for ( ; first != last; ++first) { pos = insert(pos, *first); ++pos; } } template <class T, class Alloc> template <class ForwardIterator> void vector<T, Alloc>::range_insert(iterator position, ForwardIterator first, ForwardIterator last, forward_iterator_tag) { if (first != last) { size_type n = 0; distance(first, last, n); if (size_type(end_of_storage - finish) >= n) { const size_type elems_after = finish - position; iterator old_finish = finish; if (elems_after > n) { uninitialized_copy(finish - n, finish, finish); finish += n; copy_backward(position, old_finish - n, old_finish); copy(first, last, position); } else { ForwardIterator mid = first; advance(mid, elems_after); uninitialized_copy(mid, last, finish); finish += n - elems_after; uninitialized_copy(position, old_finish, finish); finish += elems_after; copy(first, mid, position); } } else { const size_type old_size = size(); const size_type len = old_size + max(old_size, n); iterator new_start = data_allocator::allocate(len); iterator new_finish = new_start; __STL_TRY { new_finish = uninitialized_copy(start, position, new_start); new_finish = uninitialized_copy(first, last, new_finish); new_finish = uninitialized_copy(position, finish, new_finish); } # ifdef __STL_USE_EXCEPTIONS catch(...) { destroy(new_start, new_finish); data_allocator::deallocate(new_start, len); throw; } # endif /* __STL_USE_EXCEPTIONS */ destroy(start, finish); deallocate(); start = new_start; finish = new_finish; end_of_storage = new_start + len; } } } #else /* __STL_MEMBER_TEMPLATES */ //在position处插入两个迭代器之间的元素,和在position处插入n个元素类似 template <class T, class Alloc> void vector<T, Alloc>::insert(iterator position, const_iterator first, const_iterator last) { if (first != last) { size_type n = 0; distance(first, last, n); if (size_type(end_of_storage - finish) >= n) { const size_type elems_after = finish - position; iterator old_finish = finish; if (elems_after > n) { uninitialized_copy(finish - n, finish, finish); finish += n; copy_backward(position, old_finish - n, old_finish); copy(first, last, position); } else { uninitialized_copy(first + elems_after, last, finish); finish += n - elems_after; uninitialized_copy(position, old_finish, finish); finish += elems_after; copy(first, first + elems_after, position); } } else { const size_type old_size = size(); const size_type len = old_size + max(old_size, n); iterator new_start = data_allocator::allocate(len); iterator new_finish = new_start; __STL_TRY { new_finish = uninitialized_copy(start, position, new_start); new_finish = uninitialized_copy(first, last, new_finish); new_finish = uninitialized_copy(position, finish, new_finish); } # ifdef __STL_USE_EXCEPTIONS catch(...) { destroy(new_start, new_finish); data_allocator::deallocate(new_start, len); throw; } # endif /* __STL_USE_EXCEPTIONS */ destroy(start, finish); deallocate(); start = new_start; finish = new_finish; end_of_storage = new_start + len; } } } #endif /* __STL_MEMBER_TEMPLATES */ #if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32) #pragma reset woff 1174 #endif __STL_END_NAMESPACE #endif /* __SGI_STL_INTERNAL_VECTOR_H */ // Local Variables: // mode:C++ // End:
《STL源码剖析》---stl_vector.h阅读笔记
时间: 2024-10-09 20:09:54