Description
You are given a number of case-sensitive strings of alphabetic characters, find the largest string X, such that either X, or its inverse can be found as a substring of any of the given strings.
Input
The first line of the input contains a single integer t (1 <= t <= 10), the number of test cases, followed by the input data for each test case. The first line of each test case contains a single integer n (1 <= n <= 100), the number of given strings, followed
by n lines, each representing one string of minimum length 1 and maximum length 100. There is no extra white space before and after a string.
Output
There should be one line per test case containing the length of the largest string found.
Sample Input
2 3 ABCD BCDFF BRCD 2 rose orchid
Sample Output
2 2
Source
题意:给定n个字符串,求出现或反转后出现在每个字符串中的最长子串。
思路:先将每个字符串都反过来写一遍,中间用一个互不相同的
且没有出现在字符串中的字符隔开,再将n个字符串全部连起来,中间也是用一
个互不相同的且没有出现在字符串中的字符隔开,求后缀数组。然后二分答案,
再将后缀分组。判断的时候,要看是否有一组后缀在每个原来的字符串或反转后
的字符串中出现。
#include <iostream> #include <stdio.h> #include <string.h> #include <stack> #include <queue> #include <map> #include <set> #include <vector> #include <math.h> #include <bitset> #include <algorithm> #include <climits> using namespace std; #define LS 2*i #define RS 2*i+1 #define UP(i,x,y) for(i=x;i<=y;i++) #define DOWN(i,x,y) for(i=x;i>=y;i--) #define MEM(a,x) memset(a,x,sizeof(a)) #define W(a) while(a) #define gcd(a,b) __gcd(a,b) #define LL long long #define N 1000005 #define MOD 1000000007 #define INF 0x3f3f3f3f #define EXP 1e-8 int wa[N],wb[N],wsf[N],wv[N],sa[N]; int rank[N],height[N],s[N],a[N]; //sa:字典序中排第i位的起始位置在str中第sa[i] //rank:就是str第i个位置的后缀是在字典序排第几 //height:字典序排i和i-1的后缀的最长公共前缀 int cmp(int *r,int a,int b,int k) { return r[a]==r[b]&&r[a+k]==r[b+k]; } void getsa(int *r,int *sa,int n,int m)//n要包含末尾添加的0 { int i,j,p,*x=wa,*y=wb,*t; for(i=0; i<m; i++) wsf[i]=0; for(i=0; i<n; i++) wsf[x[i]=r[i]]++; for(i=1; i<m; i++) wsf[i]+=wsf[i-1]; for(i=n-1; i>=0; i--) sa[--wsf[x[i]]]=i; p=1; j=1; for(; p<n; j*=2,m=p) { for(p=0,i=n-j; i<n; i++) y[p++]=i; for(i=0; i<n; i++) if(sa[i]>=j) y[p++]=sa[i]-j; for(i=0; i<n; i++) wv[i]=x[y[i]]; for(i=0; i<m; i++) wsf[i]=0; for(i=0; i<n; i++) wsf[wv[i]]++; for(i=1; i<m; i++) wsf[i]+=wsf[i-1]; for(i=n-1; i>=0; i--) sa[--wsf[wv[i]]]=y[i]; t=x; x=y; y=t; x[sa[0]]=0; for(p=1,i=1; i<n; i++) x[sa[i]]=cmp(y,sa[i-1],sa[i],j)? p-1:p++; } } void getheight(int *r,int n)//n不保存最后的0 { int i,j,k=0; for(i=1; i<=n; i++) rank[sa[i]]=i; for(i=0; i<n; i++) { if(k) k--; else k=0; j=sa[rank[i]-1]; while(r[i+k]==r[j+k]) k++; height[rank[i]]=k; } } char str[N]; int len[105],size,ans[N],id[N]; bool vis[105]; bool check(int mid,int n,int k) { int i,j; int size = 0,cnt = 0; MEM(vis,false); for(i = 1; i<=n; i++) { if(height[i]>=mid) { for(j = 0; j<k; j++) { if(id[sa[i]]==j) cnt+=(vis[j]?0:1),vis[j]=true; if(id[sa[i-1]]==j) cnt+=(vis[j]?0:1),vis[j]=true; } } else { if(cnt>=k) return true; cnt = 0; MEM(vis,false); } } if(cnt>=k) return true; return false; } int main() { int n,k,i,j,flag = 0,t; scanf("%d",&t); while(t--) { scanf("%d",&k); n = 0; size = 0; int p = 1; for(i = 0; i<k; i++) { scanf("%s",str); int ll = strlen(str); for(j = 0; j<ll; j++) { id[n] = i; s[n++] = str[j]; } s[n++] = '#'+(p++); for(j = ll-1; j>=0; j--) { id[n] = i; s[n++] = str[j]; } s[n++] = '#'+(p++); } s[n-1] = 0; getsa(s,sa,n,255); getheight(s,n-1); int l=1,r=n,mid,ans = 0; while(l<=r) { mid = (l+r)/2; if(check(mid,n,k)) { ans = mid; l = mid+1; } else r = mid-1; } printf("%d\n",ans); } return 0; }