POJ1226:Substrings(后缀数组)

Description

You are given a number of case-sensitive strings of alphabetic characters, find the largest string X, such that either X, or its inverse can be found as a substring of any of the given strings.

Input

The first line of the input contains a single integer t (1 <= t <= 10), the number of test cases, followed by the input data for each test case. The first line of each test case contains a single integer n (1 <= n <= 100), the number of given strings, followed
by n lines, each representing one string of minimum length 1 and maximum length 100. There is no extra white space before and after a string.

Output

There should be one line per test case containing the length of the largest string found.

Sample Input

2
3
ABCD
BCDFF
BRCD
2
rose
orchid

Sample Output

2
2 

Source

Tehran 2002 Preliminary

题意:给定n个字符串,求出现或反转后出现在每个字符串中的最长子串。

思路:先将每个字符串都反过来写一遍,中间用一个互不相同的

且没有出现在字符串中的字符隔开,再将n个字符串全部连起来,中间也是用一

个互不相同的且没有出现在字符串中的字符隔开,求后缀数组。然后二分答案,

再将后缀分组。判断的时候,要看是否有一组后缀在每个原来的字符串或反转后

的字符串中出现。

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <stack>
#include <queue>
#include <map>
#include <set>
#include <vector>
#include <math.h>
#include <bitset>
#include <algorithm>
#include <climits>
using namespace std;

#define LS 2*i
#define RS 2*i+1
#define UP(i,x,y) for(i=x;i<=y;i++)
#define DOWN(i,x,y) for(i=x;i>=y;i--)
#define MEM(a,x) memset(a,x,sizeof(a))
#define W(a) while(a)
#define gcd(a,b) __gcd(a,b)
#define LL long long
#define N 1000005
#define MOD 1000000007
#define INF 0x3f3f3f3f
#define EXP 1e-8
int wa[N],wb[N],wsf[N],wv[N],sa[N];
int rank[N],height[N],s[N],a[N];
//sa:字典序中排第i位的起始位置在str中第sa[i]
//rank:就是str第i个位置的后缀是在字典序排第几
//height:字典序排i和i-1的后缀的最长公共前缀
int cmp(int *r,int a,int b,int k)
{
    return r[a]==r[b]&&r[a+k]==r[b+k];
}
void getsa(int *r,int *sa,int n,int m)//n要包含末尾添加的0
{
    int i,j,p,*x=wa,*y=wb,*t;
    for(i=0; i<m; i++)  wsf[i]=0;
    for(i=0; i<n; i++)  wsf[x[i]=r[i]]++;
    for(i=1; i<m; i++)  wsf[i]+=wsf[i-1];
    for(i=n-1; i>=0; i--)  sa[--wsf[x[i]]]=i;
    p=1;
    j=1;
    for(; p<n; j*=2,m=p)
    {
        for(p=0,i=n-j; i<n; i++)  y[p++]=i;
        for(i=0; i<n; i++)  if(sa[i]>=j)  y[p++]=sa[i]-j;
        for(i=0; i<n; i++)  wv[i]=x[y[i]];
        for(i=0; i<m; i++)  wsf[i]=0;
        for(i=0; i<n; i++)  wsf[wv[i]]++;
        for(i=1; i<m; i++)  wsf[i]+=wsf[i-1];
        for(i=n-1; i>=0; i--)  sa[--wsf[wv[i]]]=y[i];
        t=x;
        x=y;
        y=t;
        x[sa[0]]=0;
        for(p=1,i=1; i<n; i++)
            x[sa[i]]=cmp(y,sa[i-1],sa[i],j)? p-1:p++;
    }
}
void getheight(int *r,int n)//n不保存最后的0
{
    int i,j,k=0;
    for(i=1; i<=n; i++)  rank[sa[i]]=i;
    for(i=0; i<n; i++)
    {
        if(k)
            k--;
        else
            k=0;
        j=sa[rank[i]-1];
        while(r[i+k]==r[j+k])
            k++;
        height[rank[i]]=k;
    }
}

char str[N];
int len[105],size,ans[N],id[N];
bool vis[105];

bool check(int mid,int n,int k)
{
    int i,j;
    int size = 0,cnt = 0;
    MEM(vis,false);
    for(i = 1; i<=n; i++)
    {
        if(height[i]>=mid)
        {
            for(j = 0; j<k; j++)
            {
              if(id[sa[i]]==j) cnt+=(vis[j]?0:1),vis[j]=true;
              if(id[sa[i-1]]==j) cnt+=(vis[j]?0:1),vis[j]=true;
            }
        }
        else
        {
            if(cnt>=k) return true;
            cnt = 0;
            MEM(vis,false);
        }
    }
    if(cnt>=k) return true;
    return false;
}

int main()
{
    int n,k,i,j,flag = 0,t;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d",&k);
        n = 0;
        size = 0;
        int p = 1;
        for(i = 0; i<k; i++)
        {
            scanf("%s",str);
            int ll = strlen(str);
            for(j = 0; j<ll; j++)
            {
                id[n] = i;
                s[n++] = str[j];
            }
            s[n++] = '#'+(p++);
            for(j = ll-1; j>=0; j--)
            {
                id[n] = i;
                s[n++] = str[j];
            }
            s[n++] = '#'+(p++);
        }
        s[n-1] = 0;
        getsa(s,sa,n,255);
        getheight(s,n-1);
        int l=1,r=n,mid,ans = 0;
        while(l<=r)
        {
            mid = (l+r)/2;
            if(check(mid,n,k))
            {
                ans = mid;
                l = mid+1;
            }
            else r = mid-1;
        }
        printf("%d\n",ans);
    }

    return 0;
}
时间: 2024-11-07 20:37:50

POJ1226:Substrings(后缀数组)的相关文章

POJ 1226 Substrings (后缀数组)

题目大意: 问的是m个字符串里,都出现过的子串.子串也可以出现在这个串的逆序串中. 思路分析: 居然wa在全5个 "a" 的数据上. 二分的时候下界不能为0.. 思路大致上是把原串和逆序串全部处理出来,放入str中,然后在每个串中间加一个没有出现过的. 此处注意输入不仅仅是字母. 然后跑一遍后缀数组. 然后用标记计数就好了. #include <iostream> #include <cstdio> #include <algorithm> #inc

uva 10829 - L-Gap Substrings(后缀数组)

题目链接:uva 10829 - L-Gap Substrings 题目大意:给定一个字符串,问有多少字符串满足UVU的形式,要求U非空,V的长度为g. 解题思路:对字符串的正序和逆序构建后缀数组,然后枚举U的长度l,每次以长度l分区间,在l和l+d+g所在的两个区间上确定U的最大长度. #include <cstdio> #include <cstring> #include <cstdlib> #include <algorithm> using nam

poj Common Substrings(后缀数组&amp;单调队列)

Common Substrings Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 7082   Accepted: 2355 Description A substring of a string T is defined as: T(i, k)=TiTi+1...Ti+k-1, 1≤i≤i+k-1≤|T|. Given two strings A, B and one integer K, we define S, a

POJ 3415 Common Substrings 后缀数组+并查集

后缀数组,看到网上很多题解都是单调栈,这里提供一个不是单调栈的做法, 首先将两个串 连接起来求height   求完之后按height值从大往小合并.  height值代表的是  sa[i]和sa[i-1] 的公共前缀长度,那么每次合并就是合并  i和i-1 那么在合并小的时候公共前缀更大的肯定已经都合并在一起,那么就可以直接统计了. #include<iostream> #include<cstdio> #include<algorithm> #include<

spoj Distinct Substrings 后缀数组

给定一个字符串,求不相同的子串的个数. 假如给字符串“ABA";排列的子串可能: A B A AB  BA ABA 共3*(3+1)/2=6种; 后缀数组表示时: A ABA BA 对于A和AB height[i]=1; 表明一个长度公共,所以ABA中多出现了A这个子串,所以6-1=5: 对于ABA BA height[i]=0,所以不需要减去. 最后答案为5: #include<iostream> #include<stdio.h> #include<string

SPOJ 694 || 705 Distinct Substrings ( 后缀数组 &amp;&amp; 不同子串的个数 )

题意 : 对于给出的串,输出其不同长度的子串的种类数 分析 : 有一个事实就是每一个子串必定是某一个后缀的前缀,换句话说就是每一个后缀的的每一个前缀都代表着一个子串,那么如何在这么多子串or后缀的前缀中找出不同的并计数呢?思路就是所有的可能子串数 - 重复的子串数.首先我们容易得到一个长度为 len 的串的子串数为 len * ( len + 1) / 2.那如何知道重复的子串数呢?答案就是利用后缀数组去跑一遍 Height ,得到所有的最长公共前缀(LCP),这些最长公共前缀的值都存在了 He

POJ 3415 Common Substrings(后缀数组求重复字串)

题目大意:给你两个字符串,让你求出来两个字符串之间的重复子串长度大于k的有多少个. 解题思路: 先说论文上给的解释:基本思路是计算A的所有后缀和B的所有后缀之间的最长公共前缀的长度,把最长公共前缀长度不小于k的部分全部加起来.先将两个字符串连起来,中间用一个没有出现过的字符隔开.按height值分组后,接下来的工作便是快速的统计每组中后缀之间的最长公共前缀之和.扫描一遍,每遇到一个B的后缀就统计与前面的A的后缀能产生多少个长度不小于k的公共子串,这里A的后缀需要用一个单调的栈来高效的维护.然后对

SPOJ694&amp;&amp;SPOJ705:Distinct Substrings(后缀数组)

Description Given a string, we need to find the total number of its distinct substrings. Input T- number of test cases. T<=20; Each test case consists of one string, whose length is <= 1000 Output For each test case output one number saying the numb

SPOJ694--- DISUBSTR - Distinct Substrings(后缀数组)

Given a string, we need to find the total number of its distinct substrings. Input T- number of test cases. T<=20; Each test case consists of one string, whose length is <= 1000 Output For each test case output one number saying the number of distin