Spark Streaming教程

废话不说,先来个示例,有个感性认识再介绍。

这个示例来自spark自带的example,基本步骤如下:

(1)使用以下命令输入流消息:

$ nc -lk 9999

(2)在一个新的终端中运行NetworkWordCount,统计上面的词语数量并输出:

$ bin/run-example streaming.NetworkWordCount localhost 9999

(3)在第一步创建的输入流程中敲入一些内容,在第二步创建的终端中会看到统计结果,如:

第一个终端输入的内容:

hello world again

第二个端口的输出

-------------------------------------------
Time: 1436758706000 ms
-------------------------------------------
(again,1)
(hello,1)
(world,1)

简单解释一下,上面的示例通过手工敲入内容,并传给spark streaming统计单词数量,然后将结果打印出来。

附上代码:

package org.apache.spark.examples.streaming

import org.apache.spark.SparkConf
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.storage.StorageLevel

/**
 * Counts words in UTF8 encoded, ‘\n‘ delimited text received from the network every second.
 *
 * Usage: NetworkWordCount <hostname> <port>
 * <hostname> and <port> describe the TCP server that Spark Streaming would connect to receive data.
 *
 * To run this on your local machine, you need to first run a Netcat server
 *    `$ nc -lk 9999`
 * and then run the example
 *    `$ bin/run-example org.apache.spark.examples.streaming.NetworkWordCount localhost 9999`
 */
object NetworkWordCount {
  def main(args: Array[String]) {
    if (args.length < 2) {
      System.err.println("Usage: NetworkWordCount <hostname> <port>")
      System.exit(1)
    }

    StreamingExamples.setStreamingLogLevels()

    // Create the context with a 1 second batch size
    val sparkConf = new SparkConf().setAppName("NetworkWordCount")
    val ssc = new StreamingContext(sparkConf, Seconds(1))

    // Create a socket stream on target ip:port and count the
    // words in input stream of \n delimited text (eg. generated by ‘nc‘)
    // Note that no duplication in storage level only for running locally.
    // Replication necessary in distributed scenario for fault tolerance.
    val lines = ssc.socketTextStream(args(0), args(1).toInt, StorageLevel.MEMORY_AND_DISK_SER)
    val words = lines.flatMap(_.split(" "))
    val wordCounts = words.map(x => (x, 1)).reduceByKey(_ + _)
    wordCounts.print()
    ssc.start()
    ssc.awaitTermination()
  }
}

  

时间: 2024-11-13 16:15:30

Spark Streaming教程的相关文章

[spark]Spark Streaming教程

? (一)官方入门示例 废话不说,先来个示例,有个感性认识再介绍. 这个示例来自spark自带的example,基本步骤如下: (1)使用以下命令输入流消息: $ nc -lk 9999 (2)在一个新的终端中运行NetworkWordCount,统计上面的词语数量并输出: $ bin/run-example streaming.NetworkWordCount localhost 9999 (3)在第一步创建的输入流程中敲入一些内容,在第二步创建的终端中会看到统计结果,如: 第一个终端输入的内

spark streaming windowDuration,slideDuration,batchDuration?

spark streaming 不同于sotm,是一种准实时处理系统.storm 中,把批处理看错是时间教程的实时处理.而在spark streaming中,则反过来,把实时处理看作为时间极小的批处理. 1.三个时间参数 spark streaming 中有三个关于时间的参数,分别如下: 窗口时间windowDuration?:当前窗口要统计多长时间的数据,是批量时间的整数倍 滑动时间slideDuration?:要多长时间更新一次结果,是批量时间的整数倍 批量时间batchDuration?:

cdh环境下,spark streaming与flume的集成问题总结

如何做集成,其实特别简单,网上其实就是教程. http://blog.csdn.net/fighting_one_piece/article/details/40667035  看这里就成. 我用的是第一种集成.. 做的时候,出现了各种问题.    大概从从2014.12.17 早晨5点搞到2014.12.17晚上18点30 总结起来其实很简单,但做的时候搞了许久啊啊啊!!!!   这样的事情,吃一堑长一智吧 问题1.  需要引用各种包,这些包要打入你的JAR中, 因为用的是spark on y

Flink与Spark Streaming在与kafka结合的区别!

本文主要是想聊聊flink与kafka结合.当然,单纯的介绍flink与kafka的结合呢,比较单调,也没有可对比性,所以的准备顺便帮大家简单回顾一下Spark Streaming与kafka的结合. 看懂本文的前提是首先要熟悉kafka,然后了解spark Streaming的运行原理及与kafka结合的两种形式,然后了解flink实时流的原理及与kafka结合的方式. kafka kafka作为一个消息队列,在企业中主要用于缓存数据,当然,也有人用kafka做存储系统,比如存最近七天的数据.

Spark学习9 Spark Streaming流式数据处理组件学习

目录 SparkStreaming相关概念 概述 SparkStreaming的基本数据抽象DStream 处理模式 操作流程中细节 StreamingContext StreamingContext对象的创建 StreamingContext主要用法 输入源 DStream两种转化 无状态转化操作 有状态转化操作 输出操作 实践(最简单的wordCount) 创建StreamingContext对象 创建DStream对象 对DStream对象操纵 SparkStreaming相关概念 概述

Dataflow编程模型和spark streaming结合

Dataflow编程模型和spark streaming结合 主要介绍一下Dataflow编程模型的基本思想,后面再简单比较一下Spark  streaming的编程模型 == 是什么 == 为用户提供以流式或批量模式处理海量数据的能力,该服务的编程接口模型(或者说计算框架)也就是下面要讨论的dataflow model 流式计算框架处理框架很多,也有大量的模型/框架号称能较好的处理流式和批量计算场景,比如Lambda模型,比如Spark等等,那么dataflow模型有什么特别的呢? 这就要要从

Spark Streaming源码解读之Job详解

一:Spark Streaming Job生成深度思考 1. 做大数据例如Hadoop,Spark等,如果不是流处理的话,一般会有定时任务.例如10分钟触发一次,1个小时触发一次,这就是做流处理的感觉,一切不是流处理,或者与流处理无关的数据都将是没有价值的数据,以前做批处理的时候其实也是隐形的在做流处理. 2. JobGenerator构造的时候有一个核心的参数是jobScheduler, jobScheduler是整个作业的生成和提交给集群的核心,JobGenerator会基于DStream生

Spark Streaming从Kafka中获取数据,并进行实时单词统计,统计URL出现的次数

1.创建Maven项目 创建的过程参考:http://blog.csdn.net/tototuzuoquan/article/details/74571374 2.启动Kafka A:安装kafka集群:http://blog.csdn.net/tototuzuoquan/article/details/73430874 B:创建topic等:http://blog.csdn.net/tototuzuoquan/article/details/73430874 3.编写Pom文件 <?xml v

Spark学习笔记——Spark Streaming

许多应用需要即时处理收到的数据,例如用来实时追踪页面访问统计的应用.训练机器学习模型的应用, 还有自动检测异常的应用.Spark Streaming 是 Spark 为这些应用而设计的模型.它允许用户使用一套和批处理非常接近的 API 来编写流式计算应用,这样就可以大量重用批处理应用的技术甚至代码. Spark Streaming 使用离散化流( discretized stream)作为抽象表示, 叫作 DStream. DStream 是随时间推移而收到的数据的序列.在内部,每个时间区间收到