Introduction to Big Data with Apache Spark 课程总结

课程主要实用内容:

1.spark实验环境的搭建

2.4个lab的内容

3.常用函数

4.变量共享

1.spark实验环境的搭建(windows)

a. 下载,安装visualbox

管理员身份运行;课程要求最新版4.3.28,如果c中遇到虚拟机打不开的,可以用4.2.12,不影响

b. 下载,安装vagrant,重启

管理员身份运行

c. 下载虚拟机

c1.将vagrant加入path,D:\HashiCorp\Vagrant\bin

c2.创建虚拟机存放的目录,比如myvagrant

c3.下载文件mooc-setup-master.zip,解压后,拷贝Vagrantfile到myvagrant

c4.打开visual box图形界面,进入cmd,cd到myvagrant,敲命令   vagrant up

开始下载虚拟机,并打开,如果下载完成,但是打开虚拟机出错;

可以到visual box 图形界面点击打开,碰到一下错误,可尝试用4.2.12版visual box

使用说明:i.打开关闭虚拟机:打开visual box 界面,cd进入myvagrant

vagrant up 打开虚拟机,vagrant halt 关闭虚拟机

ii.ipython notebook,进入http:\\localhost:8001

停止正在运行的notebook,点击running,停止

点某 .py文件,运行note book

iii.下载ssh软件,可登入虚拟机,地址为127.0.0.1,端口2222,用户名vagrant,密码vagrant

进入后,敲pyspark,可进入pyspark交互式界面

3.常用函数

Spark中Rdd的生命周期

创建RDD(parallize、textFile等)

对RDD进行变换

(会创建新的RDD,不会改变原RDD,有

1.对每个元素进行操作-map,flatMap,mapValues

2.筛选  filter

3.排序 sortBy

3.合并结果 reduceByKey,groupByKey

4合并两个rdd union,join,leftJoin,rightJoin)

以上步骤中rdd都只相当于一个操作手册,并没有真实地在内存中产生数据,称为lazy evaluation

缓存rdd到内存中 cache() ,判断是否cache,访问 .is_cached属性

触发evaluation(包括top,take,takeOrdered,takeSample,sum,count,distinct,reduce,collect,collectAsMap)

4.变量共享

spark有两种变量共享方式

a.广播 broadcast,broadcast后的变量每个partition都会存储一份,但是只能读取,不能修改

>>> b=sc.broadcast([1,2,3,4,5])

>>> sc.parallelize([0,0]).flatMap(lambdax:b.value)

b.累加器 accumulator,只能写,不能在worker被读取

如果累加器只是一个标量,使用很简单

>>> rdd = sc.parallelize([1,2,3])
>>> def f(x):
... global a
...     a += x
>>> rdd.foreach(f)
>>> a.value
13

如果累加器是一个向量,需要定义AccumulatorParam,且zero方法和addInPlace都要实现

>>> from pyspark.accumulators import AccumulatorParam
>>> class VectorAccumulatorParam(AccumulatorParam):
...  def zero(self, value):
...         return [0.0] * len(value)
...  def addInPlace(self, val1, val2):
...    for i in xrange(len(val1)):
...      val1[i] += val2[i]
...      return val1
>>> va = sc.accumulator([1.0, 2.0, 3.0], VectorAccumulatorParam())
>>> va.value
[1.0, 2.0, 3.0]>>> defg(x):
... global va
... va += [x] * 3
>>> rdd.foreach(g)
>>> va.value
[7.0, 8.0, 9.0]

来自为知笔记(Wiz)

时间: 2024-10-07 14:12:58

Introduction to Big Data with Apache Spark 课程总结的相关文章

Why Apache Spark is a Crossover Hit for Data Scientists [FWD]

Spark is a compelling multi-purpose platform for use cases that span investigative, as well as operational, analytics. Data science is a broad church. I am a data scientist — or so I’ve been told — but what I do is actually quite different from what

Apache Spark源码走读之5 -- DStream处理的容错性分析

欢迎转载,转载请注明出处,徽沪一郎,谢谢. 在流数据的处理过程中,为了保证处理结果的可信度(不能多算,也不能漏算),需要做到对所有的输入数据有且仅有一次处理.在Spark Streaming的处理机制中,不能多算,比较容易理解.那么它又是如何作到即使数据处理结点被重启,在重启之后这些数据也会被再次处理呢? 环境搭建 为了有一个感性的认识,先运行一下简单的Spark Streaming示例.首先确认已经安装了openbsd-netcat. 运行netcatnc -lk 9999 运行spark-s

mllib:Exception in thread "main" org.apache.spark.SparkException: Input validation failed.

当我们使用mllib做分类,用到逻辑回归或线性支持向量机做分类时,可能会出现下面的错误: 15/04/09 21:27:25 ERROR DataValidators: Classification labels should be 0 or 1. Found 3000000 invalid labels Exception in thread "main" org.apache.spark.SparkException: Input validation failed. 由于做调试时

Apache Spark源码走读之12 -- Hive on Spark运行环境搭建

欢迎转载,转载请注明出处,徽沪一郎. 楔子 Hive是基于Hadoop的开源数据仓库工具,提供了类似于SQL的HiveQL语言,使得上层的数据分析人员不用知道太多MapReduce的知识就能对存储于Hdfs中的海量数据进行分析.由于这一特性而收到广泛的欢迎. Hive的整体框架中有一个重要的模块是执行模块,这一部分是用Hadoop中MapReduce计算框架来实现,因而在处理速度上不是非常令人满意.由于Spark出色的处理速度,有人已经成功将HiveQL的执行利用Spark来运行,这就是已经非常

Apache Spark源码走读之13 -- hiveql on spark实现详解

欢迎转载,转载请注明出处,徽沪一郎 概要 在新近发布的spark 1.0中新加了sql的模块,更为引人注意的是对hive中的hiveql也提供了良好的支持,作为一个源码分析控,了解一下spark是如何完成对hql的支持是一件非常有趣的事情. Hive简介 Hive的由来 以下部分摘自Hadoop definite guide中的Hive一章 "Hive由Facebook出品,其设计之初目的是让精通SQL技能的分析师能够对Facebook存放在HDFS上的大规模数据集进行分析和查询. Hive大大

Apache Spark源码走读之21 -- 浅谈mllib中线性回归的算法实现

欢迎转载,转载请注明出处,徽沪一郎. 概要 本文简要描述线性回归算法在Spark MLLib中的具体实现,涉及线性回归算法本身及线性回归并行处理的理论基础,然后对代码实现部分进行走读. 线性回归模型 机器学习算法是的主要目的是找到最能够对数据做出合理解释的模型,这个模型是假设函数,一步步的推导基本遵循这样的思路 假设函数 为了找到最好的假设函数,需要找到合理的评估标准,一般来说使用损失函数来做为评估标准 根据损失函数推出目标函数 现在问题转换成为如何找到目标函数的最优解,也就是目标函数的最优化

Apache Spark源码走读之14 -- Graphx实现剖析

欢迎转载,转载请注明出处,徽沪一郎. 概要 图的并行化处理一直是一个非常热门的话题,这里头的重点有两个,一是如何将图的算法并行化,二是找到一个合适的并行化处理框架.Spark作为一个非常优秀的并行处理框架,将一些并行化的算法移到其上面就成了一个很自然的事情. Graphx是一些图的常用算法在Spark上的并行化实现,同时提供了丰富的API接口.本文就Graphx的代码架构及pagerank在graphx中的具体实现做一个初步的学习. Google为什么赢得了搜索引擎大战 当Google还在起步的

.net 开发者尝试Apache Spark?

本文编译自一篇msdn magazine的文章,原文标题和链接为: Test Run - Introduction to Spark for .NET Developers https://msdn.microsoft.com/magazine/mt595756 本文介绍了在windows环境中运行和配置Apache Spark™,并使用scala进行几个示例的运行,可以通过本文了解 Apache Spark™的基本概念. 需要说明的是,同另外一篇for .NET Developers文章不同,

新手福利:Apache Spark入门攻略

新手福利:Apache Spark入门攻略 作者Ashwini Kuntamukkala  出处:CSDN 本文聚焦Apache Spark入门,了解其在大数据领域的地位,覆盖Apache Spark的安装及应用程序的建立,并解释一些常见的行为和操作. 一. 为什么要使用Apache Spark 时下,我们正处在一个"大数据"的时代,每时每刻,都有各种类型的数据被生产.而在此紫外,数据增幅的速度也在显著增加.从广义上看,这些数据包含交易数据.社交媒体内容(比如文本.图像和视频)以及传感