Linux资源控制-CPU和内存

主要介绍Linux下, 如果对进程的CPU和内存资源的使用情况进行控制的方法。

CPU资源控制

每个进程能够占用CPU多长时间, 什么时候能够占用CPU是和系统的调度密切相关的.

Linux系统中有多种调度策略, 各种调度策略有其适用的场景, 也很难说哪种调度策略是最优的.

Linux的调度策略可以参见代码: include/linux/sched.h

/*
 * Scheduling policies
 */
#define SCHED_NORMAL        0
#define SCHED_FIFO        1
#define SCHED_RR        2
#define SCHED_BATCH        3
/* SCHED_ISO: reserved but not implemented yet */
#define SCHED_IDLE        5
/* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
#define SCHED_RESET_ON_FORK     0x40000000

Linux 系统也提供了修改调度策略的命令和系统调用接口.

调用接口请查询相关文档, 这里主要介绍一下修改调度策略的命令 - chrt.

# 在一个终端中执行
sleep 1000
# 打开另一个终端
ps -ef | grep sleep  # 找出 sleep 1000 的pid, 这里假设是 1234
chrt -p 1234         # 可以查看 pid=1234 的进程的 调度策略, 输入如下:
      pid 1234‘s current scheduling policy: SCHED_OTHER
      pid 1234‘s current scheduling priority: 0

chrt -p -f 10 1234   # 修改调度策略为 SCHED_FIFO, 并且优先级为10
chrt -p 1234         # 再次查看调度策略
      pid 1234‘s current scheduling policy: SCHED_FIFO
      pid 1234‘s current scheduling priority: 10

补充:

  1. chrt 也可以直接指定一条命令, 并设置这条命令的优先级的调度策略, 具体查看 chrt --help
  2. 查看一个进程的调度策略, 除了使用 chrt 命令之外, 还可以 cat /proc/<PID>/sched

实时进程的CPU控制

所谓的实时进程, 也就是那些对响应时间要求比较高的进程.

这类进程需要在限定的时间内处理用户的请求, 因此, 在限定的这段时间内, 需要占用所有CPU资源, 并且不能被其它进程打断.

在这种情况下, 如果实时进程中出现了类似死循环之类的情况, 就会导致整个系统无响应.

因为实时进程的CPU优先级高, 并且未处理完之前是不会释放CPU资源的.

所以, 内核中需要有一种方式来限制实时进程的CPU资源占用.

系统整体设置

1. 获取当前系统的设置

sysctl -n kernel.sched_rt_period_us   # 实时进程调度的单位CPU时间 1 秒
1000000
sysctl -n kernel.sched_rt_runtime_us  # 实时进程在 1 秒中实际占用的CPU时间, 0.95秒
950000

这个设置说明实时进程在运行时并不是完全占用CPU的, 每1秒中有0.05秒的时间可以给其它进程运行.

这样既不会对实时进程的响应时间造成太大的影响, 也避免了实时进程卡住时导致整个系统无响应.

2. 设置实时进程占用CPU时间

上面的默认设置中, 实时进程占用 95% 的CPU时间. 如果觉得占用的太多或太少, 都是可以调整的.比如:

sysctl -w kernel.sched_rt_runtime_us=900000    # 设置实时进程每1秒中只占0.9秒的CPU时间
kernel.sched_rt_runtime_us = 900000
sysctl -n kernel.sched_rt_runtime_us
900000

cgroup 中的设置

整体设置是针对整个系统的, 我们也可以通过 cgroup 来对一组进程的CPU资源进行控制.

如果想在 cgroup 中对 sched_rt_period_us 和 sched_rt_runtime_us 进行控制, 需要内核编译选项 CONFIG_RT_GROUP_SCHED=y

查看当前系统的内核编译选项方法如下: (debian 7.6 系统)

cat /boot/config-`uname -r`

查看 CONFIG_RT_GROUP_SCHED 是否启用

cat /boot/config-`uname -r` | grep -i rt_group
# CONFIG_RT_GROUP_SCHED is not set

debian 7.6 默认没有启动这个选项, 所以挂载cgroup之后, 没有设置 sched_rt_period_us 和 sched_rt_runtime_us 的文件

mkdir /mnt/cgroup
mount -t cgroup cgroup /mnt/cgroup/
cd /mnt/cgroup/
ls -l
total 0
-r--r--r-- 1 root root 0 Aug 28 09:06 blkio.io_merged
-r--r--r-- 1 root root 0 Aug 28 09:06 blkio.io_queued
-r--r--r-- 1 root root 0 Aug 28 09:06 blkio.io_service_bytes
-r--r--r-- 1 root root 0 Aug 28 09:06 blkio.io_serviced
-r--r--r-- 1 root root 0 Aug 28 09:06 blkio.io_service_time
-r--r--r-- 1 root root 0 Aug 28 09:06 blkio.io_wait_time
--w------- 1 root root 0 Aug 28 09:06 blkio.reset_stats
-r--r--r-- 1 root root 0 Aug 28 09:06 blkio.sectors
-r--r--r-- 1 root root 0 Aug 28 09:06 blkio.time
-rw-r--r-- 1 root root 0 Aug 28 09:06 blkio.weight
-rw-r--r-- 1 root root 0 Aug 28 09:06 blkio.weight_device
-rw-r--r-- 1 root root 0 Aug 28 09:06 cgroup.clone_children
--w--w--w- 1 root root 0 Aug 28 09:06 cgroup.event_control
-rw-r--r-- 1 root root 0 Aug 28 09:06 cgroup.procs
-r--r--r-- 1 root root 0 Aug 28 09:06 cpuacct.stat
-rw-r--r-- 1 root root 0 Aug 28 09:06 cpuacct.usage
-r--r--r-- 1 root root 0 Aug 28 09:06 cpuacct.usage_percpu
-rw-r--r-- 1 root root 0 Aug 28 09:06 cpuset.cpu_exclusive
-rw-r--r-- 1 root root 0 Aug 28 09:06 cpuset.cpus
-rw-r--r-- 1 root root 0 Aug 28 09:06 cpuset.mem_exclusive
-rw-r--r-- 1 root root 0 Aug 28 09:06 cpuset.mem_hardwall
-rw-r--r-- 1 root root 0 Aug 28 09:06 cpuset.memory_migrate
-r--r--r-- 1 root root 0 Aug 28 09:06 cpuset.memory_pressure
-rw-r--r-- 1 root root 0 Aug 28 09:06 cpuset.memory_pressure_enabled
-rw-r--r-- 1 root root 0 Aug 28 09:06 cpuset.memory_spread_page
-rw-r--r-- 1 root root 0 Aug 28 09:06 cpuset.memory_spread_slab
-rw-r--r-- 1 root root 0 Aug 28 09:06 cpuset.mems
-rw-r--r-- 1 root root 0 Aug 28 09:06 cpuset.sched_load_balance
-rw-r--r-- 1 root root 0 Aug 28 09:06 cpuset.sched_relax_domain_level
-rw-r--r-- 1 root root 0 Aug 28 09:06 cpu.shares
--w------- 1 root root 0 Aug 28 09:06 devices.allow
--w------- 1 root root 0 Aug 28 09:06 devices.deny
-r--r--r-- 1 root root 0 Aug 28 09:06 devices.list
-rw-r--r-- 1 root root 0 Aug 28 09:06 net_cls.classid
-rw-r--r-- 1 root root 0 Aug 28 09:06 notify_on_release
-rw-r--r-- 1 root root 0 Aug 28 09:06 release_agent
-rw-r--r-- 1 root root 0 Aug 28 09:06 tasks

果然, 只有cpu.share, 没有 cpu.sched_rt_period_us 和 cpu.sched_rt_runtime_us

没办法, 重新编译内核, 编译内核的具体方法参见:  编译Linux内核

为了节约时间, 我们用 make localmodconfig 来创建 .config 文件, 然后修改其中的 CONFIG_RT_GROUP_SCHED=y

下载源码等等参见: 编译Linux内核, 主要步骤如下:

cd /path/to/linux-source-3.2
make localmodconfig
vim .config   # 设置 CONFIG_RT_GROUP_SCHED=y 并保存
make
make modules_install
make install
reboot      # 重启之前看看 /boot/grub/grub.cfg 中, 默认启动的是不是新安装的内核
 

启动到新内核, 再次查看内核选项 CONFIG_RT_GROUP_SCHED 是否启用

cat /boot/config-`uname -r` | grep -i rt_group
CONFIG_RT_GROUP_SCHED=y       # 已启用

再次挂载 cgroup 文件系统, 发现多了2个配置文件, cpu.rt_period_us 和 cpu.rt_runtime_us

mount -t cgroup cgroup /mnt/cgroup/
cd /mnt/cgroup/
ls -l
total 0
-r--r--r-- 1 root root 0 Aug 28 09:53 blkio.io_merged
-r--r--r-- 1 root root 0 Aug 28 09:53 blkio.io_queued
-r--r--r-- 1 root root 0 Aug 28 09:53 blkio.io_service_bytes
-r--r--r-- 1 root root 0 Aug 28 09:53 blkio.io_serviced
-r--r--r-- 1 root root 0 Aug 28 09:53 blkio.io_service_time
-r--r--r-- 1 root root 0 Aug 28 09:53 blkio.io_wait_time
--w------- 1 root root 0 Aug 28 09:53 blkio.reset_stats
-r--r--r-- 1 root root 0 Aug 28 09:53 blkio.sectors
-r--r--r-- 1 root root 0 Aug 28 09:53 blkio.time
-rw-r--r-- 1 root root 0 Aug 28 09:53 blkio.weight
-rw-r--r-- 1 root root 0 Aug 28 09:53 blkio.weight_device
-rw-r--r-- 1 root root 0 Aug 28 09:53 cgroup.clone_children
--w--w--w- 1 root root 0 Aug 28 09:53 cgroup.event_control
-rw-r--r-- 1 root root 0 Aug 28 09:53 cgroup.procs
-r--r--r-- 1 root root 0 Aug 28 09:53 cpuacct.stat
-rw-r--r-- 1 root root 0 Aug 28 09:53 cpuacct.usage
-r--r--r-- 1 root root 0 Aug 28 09:53 cpuacct.usage_percpu
-rw-r--r-- 1 root root 0 Aug 28 09:53 cpu.rt_period_us
-rw-r--r-- 1 root root 0 Aug 28 09:53 cpu.rt_runtime_us
-rw-r--r-- 1 root root 0 Aug 28 09:53 cpuset.cpu_exclusive
-rw-r--r-- 1 root root 0 Aug 28 09:53 cpuset.cpus
-rw-r--r-- 1 root root 0 Aug 28 09:53 cpuset.mem_exclusive
-rw-r--r-- 1 root root 0 Aug 28 09:53 cpuset.mem_hardwall
-rw-r--r-- 1 root root 0 Aug 28 09:53 cpuset.memory_migrate
-r--r--r-- 1 root root 0 Aug 28 09:53 cpuset.memory_pressure
-rw-r--r-- 1 root root 0 Aug 28 09:53 cpuset.memory_pressure_enabled
-rw-r--r-- 1 root root 0 Aug 28 09:53 cpuset.memory_spread_page
-rw-r--r-- 1 root root 0 Aug 28 09:53 cpuset.memory_spread_slab
-rw-r--r-- 1 root root 0 Aug 28 09:53 cpuset.mems
-rw-r--r-- 1 root root 0 Aug 28 09:53 cpuset.sched_load_balance
-rw-r--r-- 1 root root 0 Aug 28 09:53 cpuset.sched_relax_domain_level
-rw-r--r-- 1 root root 0 Aug 28 09:53 cpu.shares
--w------- 1 root root 0 Aug 28 09:53 devices.allow
--w------- 1 root root 0 Aug 28 09:53 devices.deny
-r--r--r-- 1 root root 0 Aug 28 09:53 devices.list
-rw-r--r-- 1 root root 0 Aug 28 09:53 net_cls.classid
-rw-r--r-- 1 root root 0 Aug 28 09:53 notify_on_release
-rw-r--r-- 1 root root 0 Aug 28 09:53 release_agent
-rw-r--r-- 1 root root 0 Aug 28 09:53 tasks

cat cpu.rt_period_us
1000000
cat cpu.rt_runtime_us
950000

通过配置 cpu.rt_period_us 和 cpu.rt_runtime_us 就可以对 cgroup 中的进程组中的实时进程进行 CPU使用时间的控制.

资源控制实例

上面主要介绍资源的一些理论基础, 下面通过一些实例演示如果通过 cgroup 来控制进程所使用的 CPU和内存 资源.

Linux对CPU 和 内存的控制有对应的 cgroup 子系统 cpuset 和 memory

实例: cgroup 中对其中 *子cgroup* 的CPU资源控制

对各个 *子cgroup* 的CPU占用率进行控制主要依靠每个 *子cgroup* 的 cpu.shares 文件

直接用实验过程来说话, 其中加入了一些注释.

# 安装需要的软件
apt-get install stress     # 让CPU达到 100% 的压力工具
apt-get install sysstat    # 查看系统CPU, 内存, 磁盘, 网络等资源使用情况的工具
实例1 - 默认情况, A 和 B 各占CPU总资源的 1/2
  1. 挂载 cgroup 文件系统 (注意加上 -o cpu 的选项)
  2. 在 cgroup中创建 2个子cgroup A 和 B
  3. 默认情况下, cgroup A 和 cgroup B 中的 cpu.shares 中的数值都是 1024
  4. 在 A 和 B 中用 stress 工具使其 CPU占用率达到 100%
  5. top 命令查看 A 和 B 中进程分别占用的 CPU (应该都是 50%)
# 挂载 cgroup 文件系统
mount -t cgroup -o cpu cgroup /mnt/cgroup/
cd /mnt/cgroup
ls -l
total 0
-r--r--r-- 1 root root 0 Aug 28 11:29 blkio.io_merged
-r--r--r-- 1 root root 0 Aug 28 11:29 blkio.io_queued
-r--r--r-- 1 root root 0 Aug 28 11:29 blkio.io_service_bytes
-r--r--r-- 1 root root 0 Aug 28 11:29 blkio.io_serviced
-r--r--r-- 1 root root 0 Aug 28 11:29 blkio.io_service_time
-r--r--r-- 1 root root 0 Aug 28 11:29 blkio.io_wait_time
--w------- 1 root root 0 Aug 28 11:29 blkio.reset_stats
-r--r--r-- 1 root root 0 Aug 28 11:29 blkio.sectors
-r--r--r-- 1 root root 0 Aug 28 11:29 blkio.time
-rw-r--r-- 1 root root 0 Aug 28 11:29 blkio.weight
-rw-r--r-- 1 root root 0 Aug 28 11:29 blkio.weight_device
-rw-r--r-- 1 root root 0 Aug 28 11:29 cgroup.clone_children
--w--w--w- 1 root root 0 Aug 28 11:29 cgroup.event_control
-rw-r--r-- 1 root root 0 Aug 28 11:29 cgroup.procs
-r--r--r-- 1 root root 0 Aug 28 11:29 cpuacct.stat
-rw-r--r-- 1 root root 0 Aug 28 11:29 cpuacct.usage
-r--r--r-- 1 root root 0 Aug 28 11:29 cpuacct.usage_percpu
-rw-r--r-- 1 root root 0 Aug 28 11:29 cpuset.cpu_exclusive
-rw-r--r-- 1 root root 0 Aug 28 11:29 cpuset.cpus
-rw-r--r-- 1 root root 0 Aug 28 11:29 cpuset.mem_exclusive
-rw-r--r-- 1 root root 0 Aug 28 11:29 cpuset.mem_hardwall
-rw-r--r-- 1 root root 0 Aug 28 11:29 cpuset.memory_migrate
-r--r--r-- 1 root root 0 Aug 28 11:29 cpuset.memory_pressure
-rw-r--r-- 1 root root 0 Aug 28 11:29 cpuset.memory_pressure_enabled
-rw-r--r-- 1 root root 0 Aug 28 11:29 cpuset.memory_spread_page
-rw-r--r-- 1 root root 0 Aug 28 11:29 cpuset.memory_spread_slab
-rw-r--r-- 1 root root 0 Aug 28 11:29 cpuset.mems
-rw-r--r-- 1 root root 0 Aug 28 11:29 cpuset.sched_load_balance
-rw-r--r-- 1 root root 0 Aug 28 11:29 cpuset.sched_relax_domain_level
-rw-r--r-- 1 root root 0 Aug 28 11:29 cpu.shares
--w------- 1 root root 0 Aug 28 11:29 devices.allow
--w------- 1 root root 0 Aug 28 11:29 devices.deny
-r--r--r-- 1 root root 0 Aug 28 11:29 devices.list
-rw-r--r-- 1 root root 0 Aug 28 11:29 net_cls.classid
-rw-r--r-- 1 root root 0 Aug 28 11:29 notify_on_release
-rw-r--r-- 1 root root 0 Aug 28 11:29 release_agent
-rw-r--r-- 1 root root 0 Aug 28 11:29 tasks

# 创建 子cgroup A 和 B
mkdir {A,B}
cat A/cpu.shares
1024
cat B/cpu.shares
1024

# 在 A 和 B 中分别通过 stress 工具使其CPU使用率达到 100%
echo $$ > A/tasks  # 将当前的 SHELL 加入到 cgroup A中
stress -c 2    # 这里-c 2 是因为测试机器是双核, 要在2个核上都产生 100% 的CPU 占用率
# 另外打开一个 shell 窗口, 并将这个shell 加入到 cgroup B中
echo $$ > B/tasks  # 将当前的 SHELL 加入到 cgroup B中
stress -c 2    # 在2个核上都产生 100% 的CPU 占用率
# 再打开一个 shell 窗口, 用top命令查看 CPU占用情况
top
top - 14:10:32 up 43 min,  3 users,  load average: 2.31, 1.24, 0.62
Tasks:  78 total,   5 running,  73 sleeping,   0 stopped,   0 zombie
%Cpu(s):100.0 us,  0.0 sy,  0.0 ni,  0.0 id,  0.0 wa,  0.0 hi,  0.0 si,  0.0 st
KiB Mem:   1887872 total,   114744 used,  1773128 free,    10472 buffers
KiB Swap:  3982332 total,        0 used,  3982332 free,    45068 cached

 PID USER      PR  NI  VIRT  RES  SHR S  %CPU %MEM    TIME+  COMMAND
3350 root      20   0  6524   92    0 R  49.9  0.0   0:08.73 stress
3351 root      20   0  6524   92    0 R  49.9  0.0   0:08.67 stress
3353 root      20   0  6524   92    0 R  49.9  0.0   0:07.35 stress
3354 root      20   0  6524   92    0 R  49.9  0.0   0:07.36 stress                    

# 查看这 4 个stress 进程是否分别属于 A 和 B
cat /mnt/cgroup/A/tasks
2945
3349
3350   <-- stress 进程
3351   <-- stress 进程
cat /mnt/cgroup/B/tasks
2996
3352
3353   <-- stress 进程
3354   <-- stress 进程

可以看出, A和B组中的 2个stress 进程的CPU使用率相加都是 100%,

由于我测试的电脑是双核, top所看到的CPU最大使用率是 200%, 所以和预期一致, A和B组各占CPU总资源的 1/2

实例2 - A group 占用整体CPU资源的 2/3, B group 占用整体CPU资源的 1/3
  1. 环境同 实例1, 不再重新挂载 cgroup 文件系统, 也不在重建 A 和 B
  2. A group 的 cpu.shares 文件不变, 值为 1024
  3. B group 的 cpu.shares 文件中的值改为 512, 这样, 相当于B占用CPU总资源的 1/3 (因为 512 / (512+1024) = 1/3)
  4. 同实例1, 通过2个shell窗口, 分别是 A 和 B 的CPU使用率达到 100%, 然后通过 top 查看CPU使用情况
# 在 B 中shell 窗口执行以下命令
cat B/cpu.shares
1024
echo 512 > B/cpu.shares
cat B/cpu.shares
512
stress -c 2

# 在 A 中 shell 窗口执行以下命令
stress -c 2

# 在第3个 shell 窗口, 也就是 非A, 非B 的那个 shell 窗口, 用 top 查看cpu使用情况
top
top - 14:13:18 up 46 min,  3 users,  load average: 2.24, 1.92, 1.01
Tasks:  78 total,   5 running,  73 sleeping,   0 stopped,   0 zombie
%Cpu(s):100.0 us,  0.0 sy,  0.0 ni,  0.0 id,  0.0 wa,  0.0 hi,  0.0 si,  0.0 st
KiB Mem:   1887872 total,   114744 used,  1773128 free,    10488 buffers
KiB Swap:  3982332 total,        0 used,  3982332 free,    45068 cached

 PID USER      PR  NI  VIRT  RES  SHR S  %CPU %MEM    TIME+  COMMAND
3376 root      20   0  6524   88    0 R  66.6  0.0   0:06.29 stress
3377 root      20   0  6524   88    0 R  66.6  0.0   0:06.30 stress
3373 root      20   0  6524   88    0 R  33.3  0.0   0:04.33 stress
3374 root      20   0  6524   88    0 R  33.3  0.0   0:04.32 stress               

# 查看这 4 个stress 进程是否分别属于 A 和 B
cat /mnt/cgroup/A/tasks
2945
3375
3376    <-- stress 进程
3377    <-- stress 进程
cat /mnt/cgroup/B/tasks
2996
3372
3373    <-- stress 进程
3374    <-- stress 进程

很明显, A 组中的2个进程占用了CPU总量的 2/3 左右, B组中的2个进程占用了CPU总量的 1/3 左右.

实例3 - 物理CPU的控制

上面的实例中, 虽然能够控制每个组的CPU的总体占用率, 但是不能控制某个组的进程固定在某个物理CPU上运行.

要想将 cgroup 绑定到某个固定的CPU上, 需要使用 cpuset 子系统.

首先, 查看系统是否支持 cpuset 子系统, 也就是看内核编译选项 CONFIG_CPUSETS 是否设为y

cat /boot/config-`uname -r` | grep -i cpusets
CONFIG_CPUSETS=y

我的测试系统是支持的, 如果你的系统不支持, 就需要重新编译内核了.......

然后, 用下面的例子演示将 A 和 B中的 stress 都指定到1个CPU上后的情况

  1. 卸载当前的 cgroup
  2. 再次挂载 cgroup 文件系统, 并指定 -o cpuset
  3. 指定 A 的物理CPU为 0 (双核CPU的每个核编号分别是 CPU0, CPU1)
  4. 指定 B 的物理CPU也为 0
  5. 重复 实例1 中的步骤, 观察发生的变化
umount /mnt/cgroup
mount -t cgroup -o cpuset cgroup /mnt/cgroup/
cd /mnt/cgroup
ls -l
total 0
-rw-r--r-- 1 root root 0 Aug 28 14:39 cgroup.clone_children
--w--w--w- 1 root root 0 Aug 28 14:39 cgroup.event_control
-rw-r--r-- 1 root root 0 Aug 28 14:39 cgroup.procs
-rw-r--r-- 1 root root 0 Aug 28 14:39 cpuset.cpu_exclusive
-rw-r--r-- 1 root root 0 Aug 28 14:39 cpuset.cpus    <-- 这个就是设置关联物理CPU的文件
-rw-r--r-- 1 root root 0 Aug 28 14:39 cpuset.mem_exclusive
-rw-r--r-- 1 root root 0 Aug 28 14:39 cpuset.mem_hardwall
-rw-r--r-- 1 root root 0 Aug 28 14:39 cpuset.memory_migrate
-r--r--r-- 1 root root 0 Aug 28 14:39 cpuset.memory_pressure
-rw-r--r-- 1 root root 0 Aug 28 14:39 cpuset.memory_pressure_enabled
-rw-r--r-- 1 root root 0 Aug 28 14:39 cpuset.memory_spread_page
-rw-r--r-- 1 root root 0 Aug 28 14:39 cpuset.memory_spread_slab
-rw-r--r-- 1 root root 0 Aug 28 14:39 cpuset.mems
-rw-r--r-- 1 root root 0 Aug 28 14:39 cpuset.sched_load_balance
-rw-r--r-- 1 root root 0 Aug 28 14:39 cpuset.sched_relax_domain_level
-rw-r--r-- 1 root root 0 Aug 28 14:39 notify_on_release
-rw-r--r-- 1 root root 0 Aug 28 14:39 release_agent
-rw-r--r-- 1 root root 0 Aug 28 14:39 tasks

# 创建子cgroup A 和 B
mkdir {A,B}
cat A/cpuset.cpus
         <--  默认是空的
echo 0 > A/cpuset.cpus
cat A/cpuset.cpus
0
echo 0 > B/cpuset.cpus   # 同样, 设置B组也绑定到CPU0
# 当前Shell加入到 A组
echo $$ > /mnt/cgroup/A/tasks
-bash: echo: write error: No space left on device

如果出现上述错误, 只需要再设置 /mnt/cgroup/A/cpuset.mems 即可. (参考: http://serverfault.com/questions/579555/cgroup-no-space-left-on-device)

# 同时设置 A 的 cpuset.cpus 和 cpuset.mems
echo 0 > A/cpuset.cpus
echo 0 > A/cpuset.mems
# B组也同样设置
echo 0 > B/cpuset.cpus
echo 0 > B/cpuset.mems

# 将当前 shell 加入到 A组
echo $$ > /mnt/cgroup/A/tasks   <-- 设置过 cpuset.mems 后, 就没有出错了
stress -c 2

# 再打开一个Shell窗口, 并加入到 B组
echo $$ > /mnt/cgroup/B/tasks
stress -c 2

# 再打开第3个 shell 窗口, 用top命令查看CPU使用情况
top
top - 15:13:29 up  1:46,  3 users,  load average: 1.01, 0.24, 0.12
Tasks:  78 total,   5 running,  73 sleeping,   0 stopped,   0 zombie
%Cpu(s): 50.0 us,  0.0 sy,  0.0 ni, 50.0 id,  0.0 wa,  0.0 hi,  0.0 si,  0.0 st
KiB Mem:   1887872 total,   117216 used,  1770656 free,    11144 buffers
KiB Swap:  3982332 total,        0 used,  3982332 free,    47088 cached

 PID USER      PR  NI  VIRT  RES  SHR S  %CPU %MEM    TIME+  COMMAND
3830 root      20   0  6524   92    0 R  25.0  0.0   0:04.96 stress
3831 root      20   0  6524   92    0 R  25.0  0.0   0:04.97 stress
3834 root      20   0  6524   92    0 R  25.0  0.0   0:03.56 stress
3833 root      20   0  6524   92    0 R  24.6  0.0   0:03.56 stress

从上面的结果可以看出, 虽然 stress 命令指定了 -c 2(意思是在2个CPU上运行), 但是由于A和B都只绑定了CPU0,

所以虽然是双核的机器, 它们所占用的CPU总量却只有 100%, 而不是实例1 中的 200%.

如果将B组的物理CPU绑定到CPU1, 那么应该所有 stress 的进程都占用 50%, CPU资源的总量变为 200%.

下面将B组的物理CPU绑定为CPU1, 看看结果是否和我们的预期一样.

# 在 B组的 shell 窗口中执行以下命令
echo 1 > /mnt/cgroup/B/cpuset.cpus
cat /mnt/cgroup/B/cpuset.cpus
1
stress -c 2

# 在 A组的 shell 窗口中执行以下命令
stress -c 2

# 在第3个shell窗口中用top命令查看执行结果
top
top - 15:20:07 up  1:53,  3 users,  load average: 0.38, 0.83, 0.56
Tasks:  78 total,   5 running,  73 sleeping,   0 stopped,   0 zombie
%Cpu(s):100.0 us,  0.0 sy,  0.0 ni,  0.0 id,  0.0 wa,  0.0 hi,  0.0 si,  0.0 st
KiB Mem:   1887872 total,   117340 used,  1770532 free,    11168 buffers
KiB Swap:  3982332 total,        0 used,  3982332 free,    47088 cached

  PID USER      PR  NI  VIRT  RES  SHR S  %CPU %MEM    TIME+  COMMAND
 3854 root      20   0  6524   88    0 R  49.9  0.0   0:03.76 stress
 3857 root      20   0  6524   92    0 R  49.9  0.0   0:02.29 stress
 3858 root      20   0  6524   92    0 R  49.9  0.0   0:02.29 stress
 3855 root      20   0  6524   88    0 R  49.6  0.0   0:03.76 stress

果然, 和预期一致. A组中的 stress 和 B组中的 stress 在各自的物理CPU上都占用了 100% 左右的CPU使用率.

实例4 - cgroup 对使用的内存的控制

cgroup 对内存的控制也很简单, 只要挂载cgroup时, 指定 -o memory

# 首先之前挂载的 cpuset 子系统
umount /mnt/cgroup

# 挂载cgroup 文件系统, 指定 -o memeory
mount -o memory -t cgroup memcg /mnt/cgroup/
mount: special device memcg does not exist

出现以上错误的原因可能是因为debian系统中, 默认没有启动 cgroup 的memory子系统. 可以通过以下方法确认:

cat /proc/cgroups
#subsys_name    hierarchy    num_cgroups    enabled
cpuset    0    1    1
cpu    0    1    1
cpuacct    0    1    1
memory    1    1    0              <-- 这里的 enabled 是 0
devices    0    1    1
freezer    0    1    1
net_cls    0    1    1
blkio    0    1    1
perf_event    0    1    1

为了默认启用memory子系统, 可以设置 grub选项

vim /etc/default/grub
# 修改 GRUB_CMDLINE_LINUX=""  ==> GRUB_CMDLINE_LINUX="cgroup_enable=memory"
# 保存后, 更新grub.cfg
update-grub
reboot

重启之后, 发现 /proc/cgroups 中的memory已经 enabled, 并且也可以挂载 memcg了

cat /proc/cgroups
#subsys_name    hierarchy    num_cgroups    enabled
cpuset    0    1    1
cpu    0    1    1
cpuacct    0    1    1
memory    1    1    1
devices    0    1    1
freezer    0    1    1
net_cls    0    1    1
blkio    0    1    1
perf_event    0    1    1

# 挂载cgroup 的memory子系统
mount -t cgroup -o memory memcg /mnt/cgroup
ls -l /mnt/cgroup/   <-- 可以看到有很多 memory 相关的配置
total 0
-rw-r--r-- 1 root root 0 Aug 28 15:54 cgroup.clone_children
--w--w--w- 1 root root 0 Aug 28 15:54 cgroup.event_control
-rw-r--r-- 1 root root 0 Aug 28 15:54 cgroup.procs
-rw-r--r-- 1 root root 0 Aug 28 15:54 memory.failcnt
--w------- 1 root root 0 Aug 28 15:54 memory.force_empty
-rw-r--r-- 1 root root 0 Aug 28 15:54 memory.limit_in_bytes   <-- 限制内存使用的配置文件
-rw-r--r-- 1 root root 0 Aug 28 15:54 memory.max_usage_in_bytes
-rw-r--r-- 1 root root 0 Aug 28 15:54 memory.move_charge_at_immigrate
-r--r--r-- 1 root root 0 Aug 28 15:54 memory.numa_stat
-rw-r--r-- 1 root root 0 Aug 28 15:54 memory.oom_control
-rw-r--r-- 1 root root 0 Aug 28 15:54 memory.soft_limit_in_bytes
-r--r--r-- 1 root root 0 Aug 28 15:54 memory.stat
-rw-r--r-- 1 root root 0 Aug 28 15:54 memory.swappiness
-r--r--r-- 1 root root 0 Aug 28 15:54 memory.usage_in_bytes
-rw-r--r-- 1 root root 0 Aug 28 15:54 memory.use_hierarchy
-rw-r--r-- 1 root root 0 Aug 28 15:54 notify_on_release
-rw-r--r-- 1 root root 0 Aug 28 15:54 release_agent
-rw-r--r-- 1 root root 0 Aug 28 15:54 tasks

开始实验:

  1. 重启系统 (为了保证内存的干净)
  2. 挂载 memcg
  3. 在挂载的 /mnt/cgroup 中创建 组A
  4. 将当前shell 加入到 组A
  5. 不限制组A的内存, 压缩内核源码包, 并观察压缩前后内存的变化
  6. 重复步骤 1 ~ 4
  7. 限制组A的内存为 10MB, 再次压缩内核源码包, 并观察压缩前后内存的变化
# 重启系统
reboot

# 挂载 memcg
mount -t cgroup -o memory memcg /mnt/cgroup

# 创建 组A
mkdir /mnt/cgroup/A

# 将当前 shell 加入到组A
echo $$ > /mnt/cgroup/A/tasks

# 测试不限制内存时, 内存的使用情况, 这里不用linux源码也可以, 但最好用个大点的文件夹来压缩, 以便更容易看出内存的变化.
free -m; tar czvf linux-source-3.2.tar.gz /path/to/linux-source-3.2/ > /dev/null; free -m;
             total       used       free     shared    buffers     cached
Mem:          1843        122       1721          0          9         43
-/+ buffers/cache:         68       1774
Swap:         3888          0       3888
             total       used       free     shared    buffers     cached
Mem:          1843       1744         99          0         26       1614
-/+ buffers/cache:        104       1739
Swap:         3888          0       3888

# 重启系统
reboot

# 挂载 memcg
mount -t cgroup -o memory memcg /mnt/cgroup

# 创建 组A
mkdir /mnt/cgroup/A

# 将当前 shell 加入到组A
echo $$ > /mnt/cgroup/A/tasks

# 限制 组A 的内存使用量最大为 10MB
echo 10M > /mnt/cgroup/A/memory.limit_in_bytes

# 测试限制内存为 10MB 时, 内存的使用情况.
rm -rf linux-source-3.2.tar.gz
free -m; tar czvf linux-source-3.2.tar.gz /path/to/linux-source-3.2/ > /dev/null; free -m;
             total       used       free     shared    buffers     cached
Mem:          1843        122       1721          0         10         43
-/+ buffers/cache:         68       1774
Swap:         3888          0       3888
             total       used       free     shared    buffers     cached
Mem:          1843        194       1649          0         14         48
-/+ buffers/cache:        131       1712
Swap:         3888          0       3888

从上面的结果可以看出限制内存是起了作用的.

不限制内存时, tar 压缩前后 buffer + cache 内存从 (9MB + 43MB) ==> (26MB + 1614MB)  增大了 1588MB

限制内存后, tar 压缩前后 buffer + cache 内存从 (10MB + 43MB) ==> (14MB + 48MB)  增大了 9MB

总结

简单的实验就发现 cgroup 如此强大的控制能力(而且配置也很简单), 这也就难怪LXC等容器技术能如此强大, 如此流行.

cgroup 的配置文件很多, 上面的实例中只简单使用了其中的几个配置文件, 如果想深入了解 cgroup, 更好的利用cgroup的话,

还得找个介绍cgroup配置文件的文档来研究一下, 这篇博客提供的内容还远远不够.

时间: 2024-10-15 00:37:02

Linux资源控制-CPU和内存的相关文章

Cgroups控制cpu,内存,io示例

Cgroups是control groups的缩写,最初由Google工程师提出,后来编进linux内核. Cgroups是实现IaaS虚拟化(kvm.lxc等),PaaS容器沙箱(Docker等)的资源管理控制部分的底层基础. 百度私有PaaS云就是使用轻量的cgoups做的应用之间的隔离,以下是关于百度架构师许立强,对于虚拟机VM,应用沙盒,cgroups技术选型的理解 本文用脚本运行示例进程,来验证Cgroups关于cpu.内存.io这三部分的隔离效果. 测试机器:CentOS relea

cgroup介绍、安装和控制cpu,内存,io示例

cgroup介绍 cgroup是control group的简称,它为Linux内核提供了一种任务聚集和划分的机制,通过一组参数集合将一些任务组织成一个或多个子系统. Cgroups是control groups的缩写,最初由Google工程师提出,后来编进linux内核. Cgroups是实现IaaS虚拟化(kvm.lxc等),PaaS容器沙箱(Docker等)的资源管理控制部分的底层基础 子系统是根据cgroup对任务的划分功能将任务按照一种指定的属性划分成的一个组,主要用来实现资源的控制.

看看CGroup如何控制cpu,内存,io

cgroup介绍 cgroup是control group的简称,它为Linux内核提供了一种任务聚集和划分的机制,通过一组参数集合将一些任务组织成一个或多个子系统. Cgroups是control groups的缩写,最初由Google工程师提出,后来编进linux内核. Cgroups是实现IaaS虚拟化(kvm.lxc等),PaaS容器沙箱(Docker等)的资源管理控制部分的底层基础 子系统是根据cgroup对任务的划分功能将任务按照一种指定的属性划分成的一个组,主要用来实现资源的控制.

写代码如何合理使用和优化我们的机器资源(CPU、内存、网络、磁盘)

写代码脑子一定要绷紧一根弦,认知到我们所在的机器资源是有限的.机器资源有哪些?CPU.内存.网络.磁盘等,如果不做好保护控制工作,一旦某一资源满负荷,很容易导致出现线上问题. 1 CPU 资源怎么限制 * 计算算法优化.如果服务需要进行大量的计算,比如推荐排序服务,那么务必对你的计算算法进行优化,比如笔者曾经对地理空间距离计算这一重度使用的算法进行了优化,取得了较好的效果,详见<地理空间距离计算优化>一文.* 锁.对于很多服务而言,没有那么多耗费计算资源的算法,但 CPU 使用率也很高,这个时

linux下查看cpu,内存,硬盘等硬件信息的方法

说明:Linux下可以在/proc/cpuinfo中看到每个cpu的详细信息.但是对于双核的cpu,在cpuinfo中会看到两个cpu.常常会让人误以为是两个单核的cpu. 原文地址: http://www.hpboys.com/659.html 一.linux CPU大小 [root@idc ~]# cat /proc/cpuinfo |grep "model name" && cat /proc/cpuinfo |grep "physical id&quo

获取两台linux服务器的cpu、内存、磁盘、网络等信息,可能不是最好的逻辑,但是对于小白的我自己动手收货不少

# coding: utf-8""" 作者:xiaofeng 功能:自动获取阿里云服务器的cpu.内存.磁盘.网络流量等信息,定时生产一个excel文件 版本:v1.1.5 日期:21/11/2019 版本迭代:各模块封装成方法,其中优化cpu计算方法"""import os,timeimport paramikoimport datetimeimport reimport xlwtdef main(): print("欢迎使用Linu

PHP 获取linux服务器性能CPU、内存、硬盘、进程等使用率

数据库配置文件: conn.php <?php define("MONITORED_IP", "172.16.0.191"); //被监控的服务器IP地址 也就是本机地址 define("DB_SERVER", "172.16.7.2"); //存放数据的服务器IP地址 define("DB_USER", "root"); define("DB_PWD",&qu

linux查看系统cpu和内存使用状况的方法

在系统维护的过程中,随时可能有需要查看 CPU 使用率,并根据相应信息分析系统状况的需要.在 CentOS 中,可以通过 top 命令来查看 CPU 使用状况.运行 top 命令后,CPU 使用状态会以全屏的方式显示,并且会处在对话的模式 -- 用基于 top 的命令,可以控制显示方式等等.退出 top 的命令为 q (在 top 运行中敲 q 键一次). top命令是Linux下常用的性能分析工具,能够实时显示系统中各个进程的资源占用状况,类似于Windows的任务管理器 可以直接使用top命

Linux下查看CPU和内存(很详细)

在系统维护的过程中,随时可能有需要查看 CPU 使用率,并根据相应信息分析系统状况的需要.在 CentOS 中,可以通过 top 命令来查看 CPU 使用状况.运行 top 命令后,CPU 使用状态会以全屏的方式显示,并且会处在对话的模式 -- 用基于 top 的命令,可以控制显示方式等等.退出 top 的命令为 q (在 top 运行中敲 q 键一次). top命令是Linux下常用的性能分析工具,能够实时显示系统中各个进程的资源占用状况,类似于Windows的任务管理器 可以直接使用top命