poj 3311 Hie with the Pie (状态压缩+最短路)

Hie with the Pie

Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 4491   Accepted: 2376

Description

The Pizazz Pizzeria prides itself in delivering pizzas to its customers as fast as possible. Unfortunately, due to cutbacks, they can afford to hire only one driver to do the deliveries. He will wait for 1 or more (up to 10) orders to be processed before
he starts any deliveries. Needless to say, he would like to take the shortest route in delivering these goodies and returning to the pizzeria, even if it means passing the same location(s) or the pizzeria more than once on the way. He has commissioned you
to write a program to help him.

Input

Input will consist of multiple test cases. The first line will contain a single integer n indicating the number of orders to deliver, where 1 ≤ n ≤ 10. After this will be n + 1 lines each containing n + 1 integers indicating
the times to travel between the pizzeria (numbered 0) and the n locations (numbers 1 to n). The jth value on the ith line indicates the time to go directly from location i to location j without visiting
any other locations along the way. Note that there may be quicker ways to go from i to j via other locations, due to different speed limits, traffic lights, etc. Also, the time values may not be symmetric, i.e., the time to go directly from
location i to j may not be the same as the time to go directly from location j to i. An input value of n = 0 will terminate input.

Output

For each test case, you should output a single number indicating the minimum time to deliver all of the pizzas and return to the pizzeria.

Sample Input

3
0 1 10 10
1 0 1 2
10 1 0 10
10 2 10 0
0

Sample Output

8

思路:先用Floyd求出任意两点之间的最短路,然后,可以用广搜求得答案,搜索中的每个点第一次到达用二进制位进行标记。

#include<iostream>
#include<stdio.h>
#include<math.h>
#include<string.h>
#include<algorithm>
#include<iostream>
#include<queue>
using namespace std;
#define N 12
const int inf=0x3fffffff;
struct node
{
    int x,s,t;  //位置、状态、时间
    int cnt;    //访问地点数目
    friend bool operator<(node a,node b)
    {
        return a.t>b.t;
    }
};
int mark[N][1030];
int g[N][N];
int n,ans;
void Floyd()
{
    int i,j,k;
    for(k=0;k<=n;k++)
    {
        for(i=0;i<=n;i++)
        {
            for(j=0;j<=n;j++)
            {
                g[i][j]=min(g[i][j],g[i][k]+g[k][j]);
            }
        }
    }
}
void bfs(int u)
{
    int i;
    priority_queue<node >q;
    node cur,next;
    cur.x=u;
    cur.t=cur.s=cur.cnt=0;
    q.push(cur);
    mark[u][0]=0;
    q.push(cur);
    while(!q.empty())
    {
        cur=q.top();
        q.pop();
        for(i=0;i<=n;i++)
        {
            next.s=cur.s;
            next.t=cur.t;
            next.cnt=cur.cnt;
            next.x=i;
            next.t+=g[cur.x][i];
            if(i&&(next.s&(1<<(i-1)))==0)
            {
                next.s|=(1<<(i-1));
                next.cnt++;
            }
            if(next.t<mark[i][next.s])
            {
                mark[i][next.s]=next.t;
                if(next.cnt==n)
                {
                    ans=min(ans,next.t+g[i][0]);
                    continue;
                }
                q.push(next);
            }
        }
    }
}
int main()
{
    int i,j;
    while(scanf("%d",&n),n)
    {
        for(i=0;i<=n;i++)
        {
            for(j=0;j<=n;j++)
            {
                scanf("%d",&g[i][j]);
            }
        }
        Floyd();
        for(i=0;i<=n;i++)
        {
            for(j=0;j<(1<<n);j++)
                mark[i][j]=inf;
        }
        ans=inf;
        bfs(0);
        printf("%d\n",ans);
    }
    return 0;
}
时间: 2024-12-12 23:32:07

poj 3311 Hie with the Pie (状态压缩+最短路)的相关文章

POJ - 3311 Hie with the Pie (状态压缩)

题目大意:有一间披萨店,要送n个披萨去不同的地方 现在给出每个位置之间的距离,每个位置都可以重复经过,问送完所有披萨再回到店里需要走的最短距离是多少 解题思路:这题的话,有两个状态,一个是现所在地点,另一个是已经经过的地点,所以dp数组是二维的 设dp[i][j]为现所在地为i,经过的城市的状态为j的最短路线 那么dp[i][state | (1 << i)] = min(dp[i][state | (1 << i)], dp[j][state] + g[j][i]) ...这题我

POJ 3311 Hie with the Pie (状压DP)

状态压缩DP dp[i][j]表示在i状态(用二进制表示城市有没有经过)时最后到达j城市的最小时间 转移方程dp[i][j]=min(dp[i][k]+d[k][j],dp[i][j]) d[k][j]是k城市到j城市的最短距离 要先用flody处理 #include<bits.stdc++.h> using namespace std; int d[20][20],dp[1<<11][20]; int n,m; void flody() { for(int k=0;k<=n

poj 3311 Hie with the Pie 【旅行商+回原点】

题目:poj 3311 Hie with the Pie 题意:就是批萨点小二要送批萨,然后给你每个点的距离,有向的,然后让你就走一次回到原点的最短路. 分析:因为给出的是稠密图,所以要处理一下最短路,floyd 然后TSP就好. 枚举每个状态,对于当前状态的每一个已经走过的点,枚举是从那个点走过来的,更新最短路 状态:dp[st][i] :st状态下走到点 i 的最短路 转移方程:dp[st][i]=min(dp[st&~(1<<i)][j]+mp[j][i],dp[st][i]);

POJ 3311 Hie with the Pie TSP+Floyd

保证每个点访问过一次就行,然后会到原点. 这种情况可以先做一边floyd,然后跑tsp就好. #include <cstdio> #include <cstring> #include <iostream> #include <map> #include <set> #include <vector> #include <string> #include <queue> #include <deque&g

poj 3311 Hie with the Pie(状态压缩dp)

Description The Pizazz Pizzeria prides itself in delivering pizzas to its customers as fast as possible. Unfortunately, due to cutbacks, they can afford to hire only one driver to do the deliveries. He will wait for 1 or more (up to 10) orders to be

POJ 3311 Hie with the Pie(Floyd+状态压缩DP)

贴一个TSP讲解:点击打开链接 错误的转移方程 dp[i][j] 把i当作了步数,以为至多走N步就可以了.作死啊 #include<cstdio> #include<iostream> #include<cstring> #include<algorithm> #define maxn 1100 #define inf 0x3f3f3f3f const double eps=1e-8; using namespace std; int dp[12][1<

POJ 3311 Hie with the Pie (Floyd + 状压dp 简单TSP问题)

Hie with the Pie Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 5019   Accepted: 2673 Description The Pizazz Pizzeria prides itself in delivering pizzas to its customers as fast as possible. Unfortunately, due to cutbacks, they can affo

POJ 3311 Hie with the Pie(状压DP + Floyd)

题目链接:http://poj.org/problem?id=3311 Description The Pizazz Pizzeria prides itself in delivering pizzas to its customers as fast as possible. Unfortunately, due to cutbacks, they can afford to hire only one driver to do the deliveries. He will wait fo

POJ 3311 Hie with the Pie floyd+状压DP

链接:http://poj.org/problem?id=3311 题意:有N个地点和一个出发点(N<=10),给出全部地点两两之间的距离,问从出发点出发,走遍全部地点再回到出发点的最短距离是多少. 思路:首先用floyd找到全部点之间的最短路.然后用状态压缩,dp数组一定是二维的,假设是一维的话不能保证dp[i]->dp[j]一定是最短的.由于dp[i]记录的"当前位置"不一定是能使dp[j]最小的当前位置.所以dp[i][j]中,i表示的二进制下的当前已经经过的状态,j