迁移学习

给定源域Ds和目标域Dt,D={X,P(X)},并且给定源任务和目标任务 Ts 和 Tt,其中T={Y,P(Y|X)}.4种分法:

χs≠χt。源域和目标域的特征空间不同,例如,文档是用两种不同的语言写的

xs=xt, 但P(Xs)≠P(Xt)。源域和目标域的边缘概率分布不同,例如,两个文档有着不同的主题。这个情景通常被称为域适应(domain adaptation)。

YS≠YT。两个任务的标签空间不同,例如,在源领域上的任务要求将文本分为2类,而目标领域的任务要求将文本分类10类

P(Ys|Xs)≠P(Yt|Xt)。源任务和目标任务的条件概率分布不同,例如,源和目标文档在类别上是不均衡的。这种场景在实际中是比较常见的

例如:贷后预警, 预测3天后是否逾期,与预测未来133天后是否坏账,其特征的边缘分布是不一样的。

时间: 2024-10-05 05:06:45

迁移学习的相关文章

迁移学习(Transfer Learning)(转载)

原文地址:http://blog.csdn.net/miscclp/article/details/6339456 在传统的机器学习的框架下,学习的任务就是在给定充分训练数据的基础上来学习一个分类模型:然后利用这个学习到的模型来对测试文档进行分类与预测.然而,我 们看到机器学习算法在当前的Web挖掘研究中存在着一个关键的问题:一些新出现的领域中的大量训练数据非常难得到.我们看到Web应用领域的发展非常快速.大量新的领域不断涌现,从传统的新闻,到网页,到图片,再到博客.播客等等.传统的机器学习需要

『TensorFlow』迁移学习_他山之石,可以攻玉

目的: 使用google已经训练好的模型,将最后的全连接层修改为我们自己的全连接层,将原有的1000分类分类器修改为我们自己的5分类分类器,利用原有模型的特征提取能力实现我们自己数据对应模型的快速训练.实际中对于一个陌生的数据集,原有模型经过不高的迭代次数即可获得很好的准确率. 实战: 实机文件夹如下,两个压缩文件可以忽略: 花朵图片数据下载: 1 curl -O http://download.tensorflow.org/example_images/flower_photos.tgz 已经

迁移学习( Transfer Learning )

在传统的机器学习的框架下,学习的任务就是在给定充分训练数据的基础上来学习一个分类模型:然后利用这个学习到的模型来对测试文档进行分类与预测.然而,我们看到机器学习算法在当前的Web挖掘研究中存在着一个关键的问题:一些新出现的领域中的大量训练数据非常难得到.我们看到Web应用领域的发展非常快速.大量新的领域不断涌现,从传统的新闻,到网页,到图片,再到博客.播客等等.传统的机器学习需要对每个领域都标定大量训练数据,这将会耗费大量的人力与物力.而没有大量的标注数据,会使得很多与学习相关研究与应用无法开展

增强学习、增量学习、迁移学习——概念性认知

一.增强学习/强化学习(Reinforcement Learning ) 我们总是给定一个样本x,然后给或者不给label y.之后对样本进行拟合.分类.聚类或者降维等操作.然而对于很多序列决策或者控制问题,很难有这么规则的样本.比如,四足机器人的控制问题,刚开始都不知道应该让其动那条腿,在移动过程中,也不知道怎么让机器人自动找到合适的前进方向.另外如要设计一个下象棋的AI,每走一步实际上也是一个决策过程,虽然对于简单的棋有A*的启发式方法,但在局势复杂时,仍然要让机器向后面多考虑几步后才能决定

迁移学习全面概述:从基本概念到相关研究

目录: 1.什么是迁移学习? 2.为什么现在需要迁移学习? 3.迁移学习的定义 4.迁移学习的场景 5.迁移学习的应用 从模拟中学习 适应到新的域 跨语言迁移知识 6.迁移学习的方法 使用预训练的 CNN 特征 学习域不变的表征 让表征更加相似 混淆域 7.相关的研究领域 半监督学习 更有效地使用可用的数据 提高模型的泛化能力 让模型更加稳健 多任务学习 持续学习 zero-shot 学习 8.总结 ------------------------------------------------

tensorflow实现迁移学习

此例程出自<TensorFlow实战Google深度学习框架>6.5.2小节 卷积神经网络迁移学习. 数据集来自http://download.tensorflow.org/example_images/flower_photos.tgz ,及谷歌提供的Inception-v3模型https://storage.googleapis.com/download.tensorflow.org/models/inception_dec_2015.zip . 自行下载和解压. 解压后的文件夹包含5个子

神经网络(十二) 迁移学习

介绍 1.什么时候需要进行迁移学习 目前大多数机器学习算法均是假设训练数据以及测试数据的特征分布相同.然而这在现实世界中却时常不可行.例如我们我们要对一个任务进行分类,但是此任务中数据不充足(在迁移学习中也被称为目标域),然而却有大量的相关的训练数据(在迁移学习中也被称为源域),但是此训练数据与所需进行的分类任务中的测试数据特征分布不同(例如语音情感识别中,一种语言的语音数据充足,然而所需进行分类任务的情感数据却极度缺乏),在这种情况下如果可以采用合适的迁移学习方法则可以大大提高样本不充足任务的

1、VGG16 2、VGG19 3、ResNet50 4、Inception V3 5、Xception介绍——迁移学习

ResNet, AlexNet, VGG, Inception: 理解各种各样的CNN架构 本文翻译自ResNet, AlexNet, VGG, Inception: Understanding various architectures of Convolutional Networks,原作者保留版权 卷积神经网络在视觉识别任务上的表现令人称奇.好的CNN网络是带有上百万参数和许多隐含层的"庞然怪物".事实上,一个不好的经验规则是:网络越深,效果越好.AlexNet,VGG,Inc

NASNet学习笔记——?? 核心一:延续NAS论文的核心机制使得能够自动产生网络结构; ?? 核心二:采用resnet和Inception重复使用block结构思想; ?? 核心三:利用迁移学习将生成的网络迁移到大数据集上提出一个new search space。

from:https://blog.csdn.net/xjz18298268521/article/details/79079008 NASNet总结 论文:<Learning Transferable Architectures for Scalable Image Recognition> 注 ??先啥都不说,看看论文的实验结果,图1和图2是NASNet与其他主流的网络在ImageNet上测试的结果的对比,图3是NASNet迁移到目标检测任务上的检测结果,从这图瞬间感觉论文的厉害之处了,值

(转)Matlab深度学习工具试玩手册一:基本操作与迁移学习

原贴博客:https://blog.csdn.net/zfrycw/article/details/80633979 目录 前言 一.利用现成网络进行分类 二.构建简单的分类网络 三.迁移学习 前言 Matlab从2016a版本开始提供了深度学习的相关工具,可以很方便地构建自己的网络或下载一些现成的经典网络(如AlexNet,GoogLeNet和VGG系列)进行迁移学习.作为一个初学者,我粗浅地认为,对于深度学习,我们实际的操作步骤可以分三大块:数据集(包括载入图片,制作训练集验证集,送入网络前