【POJ】1556 The Doors(计算几何基础+spfa)

http://poj.org/problem?id=1556

首先路径的每条线段一定是端点之间的连线。证明?这是个坑...反正我是随便画了一下图然后就写了..

然后re是什么节奏?我记得我开够了啊...然后再开大点才a...好囧啊.

#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
#include <set>
#include <map>
using namespace std;
typedef long long ll;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << (#x) << " = " << (x) << endl
#define error(x) (!(x)?puts("error"):0)
#define rdm(x, i) for(int i=ihead[x]; i; i=e[i].next)
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<‘0‘||c>‘9‘; c=getchar()) if(c==‘-‘) k=-1; for(; c>=‘0‘&&c<=‘9‘; c=getchar()) r=r*10+c-‘0‘; return k*r; }

const double eps=1e-6;
int dcmp(double x) { return abs(x)<eps?0:(x<0?-1:1); }
struct ipoint { double x, y; };
double icross(ipoint &a, ipoint &b, ipoint &c) {
	static double x1, x2, y1, y2;
	x1=a.x-c.x; y1=a.y-c.y;
	x2=b.x-c.x; y2=b.y-c.y;
	return x1*y2-x2*y1;
}
int ijiao(ipoint &p1, ipoint &p2, ipoint &q1, ipoint &q2) {
	return (dcmp(icross(p1, q1, q2))^dcmp(icross(p2, q1, q2)))==-2 &&
		   (dcmp(icross(q1, p1, p2))^dcmp(icross(q2, p1, p2)))==-2;
}

const int N=1000;
struct dat { int next, to; double w; }e[N<<2];
int ihead[N], cnt;
void add(int u, int v, double w) {
	e[++cnt].next=ihead[u]; ihead[u]=cnt; e[cnt].to=v; e[cnt].w=w;
}
double spfa(int s, int t, int n) {
	static double d[N];
	static int q[N], front, tail, u, v;
	static bool vis[N];
	front=tail=0;
	for1(i, 0, n) vis[i]=0, d[i]=1e99;
	d[s]=0; q[tail++]=s; vis[s]=1;
	while(front!=tail) {
		u=q[front++]; if(front==N) front=0; vis[u]=0;
		rdm(u, i) if(d[v=e[i].to]+eps>d[u]+e[i].w) {
			d[v]=d[u]+e[i].w;
			if(!vis[v]) {
				vis[v]=1;
				if(d[v]<d[q[front]]+eps) {
					--front; if(front<0) front+=N;
					q[front]=v;
				}
				else { q[tail++]=v; if(tail==N) tail=0; }
			}
		}
	}
	return d[t];
}

ipoint p[N], line[N*3][2];
int n, pn, ln;

bool check(ipoint &x, ipoint &y) {
	for1(i, 1, ln) if(ijiao(x, y, line[i][0], line[i][1])) return false;
	return true;
}
double sqr(double x) { return x*x; }
double dis(ipoint &x, ipoint &y) { return sqrt(sqr(x.x-y.x)+sqr(x.y-y.y)); }

int main() {
	while(read(n), n!=-1) {
		ln=0; pn=0;
		++pn; p[pn].x=0; p[pn].y=5;
		++pn; p[pn].x=10; p[pn].y=5;
		static double rx, ry[4];
		while(n--) {
			scanf("%lf", &rx);
			rep(k, 4) scanf("%lf", &ry[k]);
			++ln; line[ln][0]=(ipoint){rx, 0};		line[ln][1]=(ipoint){rx, ry[0]};
			++ln; line[ln][0]=(ipoint){rx, ry[1]};	line[ln][1]=(ipoint){rx, ry[2]};
			++ln; line[ln][0]=(ipoint){rx, ry[3]};	line[ln][1]=(ipoint){rx, 10};
			rep(k, 4) ++pn, p[pn].x=rx, p[pn].y=ry[k];
		}
		for1(i, 1, pn) for1(j, 1, pn) if(i!=j && check(p[i], p[j])) add(i, j, dis(p[i], p[j]));
		printf("%.2f\n", spfa(1, 2, pn));

		memset(ihead, 0, sizeof(int)*(pn+1));
		cnt=0;
	}
	return 0;
}

  



Description

You are to find the length of the shortest path through a chamber containing obstructing walls. The chamber will always have sides at x = 0, x = 10, y = 0, and y = 10. The initial and final points of the path are always (0, 5) and (10, 5). There will also be from 0 to 18 vertical walls inside the chamber, each with two doorways. The figure below illustrates such a chamber and also shows the path of minimal length. 

Input

The input data for the illustrated chamber would appear as follows.


4 2 7 8 9 
7 3 4.5 6 7

The first line contains the number of interior walls. Then there is a line for each such wall, containing five real numbers. The first number is the x coordinate of the wall (0 < x < 10), and the remaining four are the y coordinates of the ends of the doorways in that wall. The x coordinates of the walls are in increasing order, and within each line the y coordinates are in increasing order. The input file will contain at least one such set of data. The end of the data comes when the number of walls is -1.

Output

The output should contain one line of output for each chamber. The line should contain the minimal path length rounded to two decimal places past the decimal point, and always showing the two decimal places past the decimal point. The line should contain no blanks.

Sample Input

1
5 4 6 7 8
2
4 2 7 8 9
7 3 4.5 6 7
-1

Sample Output

10.00
10.06

Source

Mid-Central USA 1996

时间: 2024-10-21 09:59:09

【POJ】1556 The Doors(计算几何基础+spfa)的相关文章

Poj 1556 The Doors 计算几何+最短路

其实本题非常的无脑,无脑拍完1A,写到blog里只因为TM无脑拍也拍了很久啊= = #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> #include <climits> #include <string> #include <iostream> #include <map> #include <cstdl

POJ 1556 - The Doors 线段相交不含端点

POJ 1556 - The Doors题意:    在 10x10 的空间里有很多垂直的墙,不能穿墙,问你从(0,5) 到 (10,5)的最短距离是多少.    分析:        要么直达,要么一定是墙的边缘点之间以及起始点.终点的连线.        所以先枚举墙上每一点到其他点的直线可达距离,就是要判定该线段是否与墙相交(不含端点).        然后最短路. 1 #include <iostream> 2 #include <cstdio> 3 #include &l

POJ 1556 The Doors 线段交 dijkstra

LINK 题意:在$10*10$的几何平面内,给出n条垂直x轴的线,且在线上开了两个口,起点为$(0, 5)$,终点为$(10, 5)$,问起点到终点不与其他线段相交的情况下的最小距离. 思路:将每个开口的两端点作为一个节点,再枚举点与点间能否直接到达(判相交),以此建图求最短路. /** @Date : 2017-07-11 16:17:31 * @FileName: POJ 1556 线段交+dijkstra 计算几何.cpp * @Platform: Windows * @Author :

POJ 1556 The Doors

计算几何+最短路 枚举线段是否相交建图,然后跑最短路 #include<cstdio> #include<cstring> #include<vector> #include<cmath> #include<queue> #include<algorithm> using namespace std; const int maxn=1000+10; const double eps=1e-8; int n; int totP,totL

POJ 1556 The Doors --几何,最短路

题意: 给一个正方形,从左边界的中点走到右边界的中点,中间有一些墙,问最短的距离是多少. 解法: 将起点,终点和所有墙的接触到空地的点存下来,然后两两之间如果没有线段(墙)阻隔,就建边,最后跑一个最短路SPFA,即可得出答案. 代码: #include <iostream> #include <cstdio> #include <cstring> #include <cstdlib> #include <cmath> #include <a

POJ 2398 - Toy Storage - [计算几何基础题][同POJ2318]

题目链接:http://poj.org/problem?id=2398 Time Limit: 1000MS Memory Limit: 65536K Description Mom and dad have a problem: their child, Reza, never puts his toys away when he is finished playing with them. They gave Reza a rectangular box to put his toys in

POJ 1556 The Doors(线段交+最短路)

#include <iostream> #include <stdio.h> #include <string.h> #include <algorithm> #include <queue> #include <map> #include <vector> #include <set> #include <string> #include <math.h> using namespac

poj 3304 Segments(计算几何基础)

Segments Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11593   Accepted: 3657 Description Given n segments in the two dimensional space, write a program, which determines if there exists a line such that after projecting these segments

简单几何(线段相交+最短路) POJ 1556 The Doors

题目传送门 题意:从(0, 5)走到(10, 5),中间有一些门,走的路是直线,问最短的距离 分析:关键是建图,可以保存所有的点,两点连通的条件是线段和中间的线段都不相交,建立有向图,然后用Dijkstra跑最短路.好题! /************************************************ * Author :Running_Time * Created Time :2015/10/24 星期六 09:48:49 * File Name :POJ_1556.cpp