广义线性模型(logistic和softmax)

再谈广义线性模型之前,先来看一下普通线性模型:

普通线性模型的假设主要有以下几点:

1.响应变量Y和误差项?正态性:响应变量Y和误差项?服从正态分布,且?是一个白噪声过程,因而具有零均值,同方差的特性。

2.预测量xi和未知参数βi的非随机性:预测量xi具有非随机性、可测且不存在测量误差;未知参数βi认为是未知但不具随机性的常数,值得注意的是运用最小二乘法或极大似然法解出的未知参数的估计值β^i则具有正态性。

广义线性模型(generalized linear model)正是在普通线性模型的基础上,将上述四点模型假设进行推广而得出的应用范围更广,更具实用性的回归模型。此模式假设实验者所量测的随机变量的分布函数与实验中系统性效应(即非随机的效应)可经由一链结函数(link function)建立起可资解释其相关性的函数。响应变量的分布推广至指数分散族(exponential dispersion family):比如正态分布、泊松分布、二项分布、负二项分布、伽玛分布、逆高斯分布。

指数分布族

指数分布族(exponential dispersion family)实质上是对一类具有以下形式的概率密度函数或具有此类密度函数的分布的总括:

其中η成为分布的自然参数(natural parameter),T(y)成为充分统计,对于很多分类问题,这个值就是y,固定T,a,b,形成了一个参数是η的函数簇。

我们把伯努力分布写成:

在这里自然参数η就是

以二分类为例,预测值y是二值的{1,0},假设给定x和参数,y的概率分布服从伯努利分布(对应构建GLM的第一条假设)。由上面高斯分布和指数家族分布的对应关系可知。

可以从GLM这种角度理解为什么logistic regression的公式是这个形式~

Logistic回归可以解决二元分类问题,但是对于多元分类,就需要使用Softmax回归来解决,比如对于邮件不是仅仅分为spam和not-spam,而是分为spam,personal,work

所以数据的分布也变成多项分布(multinomial distribution),是二项分布的推广

与上面不同的是不再成立,取而代之的是

Softmax的指数分布族如下所示:

虽然看着挺复杂,但如果理解了logistic的相应函数,要看懂这个应该没问题。

我们的目标是要取出其中的

根据上述公式推导出

广义线性模型(logistic和softmax)

时间: 2024-10-13 20:59:17

广义线性模型(logistic和softmax)的相关文章

机器学习 —— 基础整理(五):线性回归;二项Logistic回归;Softmax回归;广义线性模型

本文简单整理了以下内容: (一)线性回归 (二)二分类:二项Logistic回归 (三)多分类:Softmax回归 (四)广义线性模型 二项Logistic回归是我去年入门机器学习时学的第一个模型,我觉得这个模型很适合用来入门(但是必须注意这个模型有很多很多很多很多可以展开的地方).比较有意思的是那时候还不会矩阵微积分,推导梯度时还是把矩阵全都展开求的(牛顿法要用的二阶梯度也是)... 下面的文字中,"Logistic回归"都表示用于二分类的二项Logistic回归. 首先约定一下记号

广义线性模型与Logistic回归

一.广义线性模型 广义线性模型应满足三个假设: 第一个假设为给定X和参数theta,Y的分布服从某一指数函数族的分布. 第二个假设为给定了X,目标是输出 X条件下T(y)的均值,这个T(y)一般等于y,也有不等的情况, 第三个假设是对假设一种的变量eta做出定义. 二.指数函数族 前面提到了指数函数族,这里给出定义,满足以下形式的函数构成了指数函数族: 其中a,b,T都是函数. 三.Logistic 函数的导出 Logistic回归假设P(y|x)满足伯努利Bernouli分布即 我们的目标是在

分类和逻辑回归(Classification and logistic regression),广义线性模型(Generalized Linear Models) ,生成学习算法(Generative Learning algorithms)

分类和逻辑回归(Classification and logistic regression) http://www.cnblogs.com/czdbest/p/5768467.html 广义线性模型(Generalized Linear Models) http://www.cnblogs.com/czdbest/p/5769326.html 生成学习算法(Generative Learning algorithms) http://www.cnblogs.com/czdbest/p/5771

斯坦福CS229机器学习课程笔记二:GLM广义线性模型与Logistic回归

一直听闻Logistic Regression逻辑回归的大名,比如吴军博士在<数学之美>中提到,Google是利用逻辑回归预测搜索广告的点击率.因为自己一直对个性化广告感兴趣,于是疯狂google过逻辑回归的资料,但没有一个网页资料能很好地讲清到底逻辑回归是什么.幸好,在CS229第三节课介绍了逻辑回归,第四节课介绍了广义线性模型,综合起来总算让我对逻辑回归有了一定的理解.与课程的顺序相反,我认为应该先了解广义线性模型再来看逻辑回归,也许这也是为什么讲逻辑回归的网页资料总让人感觉云里雾里的原因

斯坦福《机器学习》Lesson4感想-------2、广义线性模型

在前面几篇中分类问题和回归问题里涉及到的伯努利分布和高斯分布都是广义线性模型(Generative Linear Models.GLMs)的特例.下面将详细介绍广义线性模型. 1.指数族 我们可以将一些分布总结到一个指数族中.指数族可表示为: η是指naturalparameter/canonical parameter,T (y)是指sufficientstatistic, a(η)是指logpartition function.T.a和b的选择决定了分布族,η的改变会得到这个分布族里的不同分

Stanford大学机器学习公开课(四):牛顿法、指数分布族、广义线性模型

(一)牛顿法解最大似然估计 牛顿方法(Newton's Method)与梯度下降(Gradient Descent)方法的功能一样,都是对解空间进行搜索的方法.其基本思想如下: 对于一个函数f(x),如果我们要求函数值为0时的x,如图所示: 我们先随机选一个点,然后求出该点的切线,即导数,延长它使之与x轴相交,以相交时的x的值作为下一次迭代的值. 更新规则为: 那么如何将牛顿方法应用到机器学习问题求解中呢? 对于机器学习问题,我们优化的目标函数为极大似然估计L,当极大似然估计函数取得最大时,其导

广义线性模型(Generalized Linear Models)

在线性回归问题中,我们假设,而在分类问题中,我们假设,它们都是广义线性模型的例子,而广义线性模型就是把自变量的线性预测函数当作因变量的估计值.很多模型都是基于广义线性模型的,例如,传统的线性回归模型,最大熵模型,Logistic回归,softmax回归. 指数分布族 在了解广义线性模型之前,先了解一下指数分布族(the exponential family) 指数分布族原型如下 如果一个分布可以用上面形式在表示,那么这个分布就属于指数分布族,首先来定义一下上面形式的符号: η:分布的自然参数(n

机器学习-广义线性模型

广义线性模型是把自变量的线性预测函数当作因变量的估计值.在机器学习中,有很多模型都是基于广义线性模型的,比如传统的线性回归模型,最大熵模型,Logistic回归,softmax回归,等等.今天主要来学习如何来针对某类型的分布建立相应的广义线性模型. Contents 1. 广义线性模型的认识 2. 常见概率分布的认识 1. 广义线性模型的认识 首先,广义线性模型是基于指数分布族的,而指数分布族的原型如下 为自然参数,它可能是一个向量,而叫做充分统计量,也可能是一个向量,通常来说. 服从高斯分布,

1.1.广义线性模型

下面介绍的是一组用于回归的方法,这些方法的目标值是输入变量的线性组合.用作为预测值. 贯穿模块,我们指定向量为coef_(系数),为intercept_(截距). 要使用广义线性模型实现分类,详见Logistic回归. 1.1.1.常规最小二乘法 线性回归拟合以系数最小化可观测到的数据的响应与线性模型预测的响应的残差和的平方,用数学公式表示即: LinearRegression 对数组X,y使用fit方法,并将结果的系数存放在coef_中: >>> from sklearn import