C++前缀表达式和后缀表达式

比较被大众所认可的结果:

(1)在自定义的数据类型的时候,因为前缀式(++i)可以返回对象的引用,而后缀式(i++),必须返回对象的数值,所以,导致在大的对象的时候产生了较大的复制开销,引起效率降低。所以,使用自定义的数据类型的时候,使用前缀式(++i)效率更好一些;

(2)如果是内置类型的,如int,效率是一样的。

(3)c++Primer上面有说:对于老旧的编译器++i效率好,对于好的编译器i++被优化了(效率一样)。表示该用哪个用哪个。

时间: 2024-10-11 16:17:27

C++前缀表达式和后缀表达式的相关文章

[转]中缀表达式、前缀表达式、后缀表达式的相互转换

--------------------------------后缀转中缀---------------------------------------------- 1.建立一个栈,从左向右扫描后缀表达式,遇到运算数则压入栈: 2.遇到运算符就把栈顶两个元素出栈,执行运算,得到的结果作为新的运算符再压入栈: 3.依次走到表达式结尾: 例:把逆波兰式(即后缀表达式)ab+c*转换为中缀表达式: 1)a入栈(0位置) 2)b入栈(1位置) 3)遇到运算符"+",将a和b出栈,执行a+b的

中缀表达式转后缀表达式和前缀表达式

中缀表达式化后缀表达式: (1+3)/8*3-5= 构建一个空运算符栈.先向里面压入一个'='(方便后边的比较).然后从左向右扫描中缀表达式,如果是操作数,则直接输出即可:如果是左括号则直接入栈,如果是右括号,则弹栈,直到左括号且将左括号也弹出:如果是其他运算符,则按照乘除优先于加减,如果是乘除(加减)则按照谁先进栈谁优先,即a优先于b表示为a>b,如果栈顶元素优先于当前元素,则一直弹栈,直到栈顶优先级小于当前元素优先级,将当前元素压栈,如果优先级相同,只需弹栈就可以了. /*比较栈顶元素跟当前

算术表达式的前缀表达式,中缀表达式和后缀表达式

这里所谓的前缀,中缀,后缀是根据操作符的位置来定的,如果操作符在操作数前面,则称为前缀表达式,例如"- + 1 × + 2 3 4 5";如果操作符在操作数之间,则称为中缀表达式,例如 "1+((2+3)×4)-5";如果操作符在操作数后面,则称为后缀表达式,例如"1 2 3 + 4 × + 5 -". 虽然中缀表达式符合人类的日常思维习惯,但是计算机在存储中缀表达式时,需要使用树这种数据结构,如果表达式过于复杂,那么树的高度会变得很高,大大增加

中缀表达式到前缀表达式和后缀表达式

1.算法思路 转化为后缀:从左到右遍历中缀表达式,遇到操作数,输出,遇到操作符,当前操作符的优先级大于栈顶操作符优先级,进栈,否则,弹出栈顶优先级大于等于当前操作符的操作符,当前操作符进栈. 转化为前缀:从右到左遍历中缀表达式,遇到操作数,输出,遇到操作符,当前操作符的优先级大于等于栈顶操作符优先级,进栈,否则,弹出栈顶优先级大于当前操作符的操作符,当前操作符进栈.--参考该网址 以上方法需要先定义操作符优先级,当然,可以定义.但是这样会麻烦许多,那么不如用括号来进行进行限定.这样就不需要写判断

前缀表达式、中缀表达式和后缀表达式

前缀.中缀.后缀表达式 前缀.中缀.后缀表达式是对表达式的不同记法,其区别在于运算符相对于操作数的位置不同,前缀表达式的运算符位于操作数之前,中缀和后缀同理 举例: 中缀表达式:1 + (2 + 3) × 4 - 5 前缀表达式:- + 1 × + 2 3 4 5 后缀表达式:1 2 3 + 4 × + 5 - 中缀表达式 中缀表达式是一种通用的算术或逻辑公式表示方法,操作符以中缀形式处于操作数的中间.中缀表达式是人们常用的算术表示方法. 虽然人的大脑很容易理解与分析中缀表达式,但对计算机来说中

数据结构Java实现06----中缀表达式转换为后缀表达式

数据结构Java实现06----中缀表达式转换为后缀表达式 本文主要内容: 表达式的三种形式 中缀表达式与后缀表达式转换算法 一.表达式的三种形式: 中缀表达式:运算符放在两个运算对象中间,如:(2+1)*3.我们从小做数学题时,一直使用的就是中缀表达式. 后缀表达式:不包含括号,运算符放在两个运算对象的后面,所有的计算按运算符出现的顺序,严格从左向右进行(不再考虑运算符的优先规则),如:2 1 + 3 *.又比如3+(6-4/2)*5=23的后缀表达式为:3642/-5*+# (#符号为结束符

栈的应用之中缀表达式转后缀表达式

1,中缀表达式的定义及为什么要将中缀表达式转换为后缀表达式? 中缀表达式(中缀记法) 中缀表达式是一种通用的算术或逻辑公式表示方法,操作符以中缀形式处于操作数的中间.中缀表达式是人们常用的算术表示方法. 虽然人的大脑很容易理解与分析中缀表达式,但对计算机来说中缀表达式却是很复杂的,因此计算表达式的值时,通常需要先将中缀表达式转换为前缀或后缀表达式,然后再进行求值.对计算机来说,计算前缀或后缀表达式的值要比中缀表达式简单. 比如,计算机计算后缀表达式的过程如下----后缀表达式的计算机求值: 从左

数据结构中缀表达式转后缀表达式以及后缀转中缀表达式

最近一直在看数据结构这本书,我相信,对于每个程序员来说,数据结构都尤为重要.为什么要学,可以看看这位博友的认识http://blog.csdn.NET/sdkfjksf/article/details/54380659 直入主题:将中缀表达式转为后缀表达式 以及将后缀表达式转为前缀表达式的实现. 关于后缀转中缀,中缀转后缀的理论介绍,请先阅读其互转的理论知识,或者我转发的这篇文章,这里不再累赘,最好参考<数据结构与算法描述Java语言版>,接下来将会用java写. 一.首先,怎么实现中缀表达式

java中缀表达式转后缀表达式

四则运算是栈的重要应用之一 中缀表达式转后缀表达式(逆波兰算法)过程 从左到右遍历中缀表达式 数字直接输出为后缀表达式一部分 如果是符号,则判断与栈顶元素的优先级 高于栈顶元素优先级直接入栈 低于或等于栈顶优先级栈顶元素出栈并输出为后缀表达式一部分(注意这里是递归比较栈顶元素的优先级并出栈),最后将当前元素入栈直到遍历完中缀表达式,最终输出后缀表达式 下面是自己的实现源码 package com.yhq.demospringboot; import org.apache.commons.lang

中缀表达式转为后缀表达式

** * 中缀表达式转后缀表达式 * * 作用:将一长串计算表达式转换为计算机易于操作的字符序列,用于计算器的设计 *  * 参与转换运算符 * +-/*()^% * * * 使用StringBuilder来保存转换出的后缀表达式 * 使用栈来操作运算符 * * * 转换原则 * 1.上述字符中()没有优先级值,+-优先级值为1,/*%优先级值为2,^优先级值为3 * 2.对于一个待计算的表达式,从左向右逐个检查每个字符 * 3.遇到数字,直接append到StringBuilder * 4.遇