C#编写TensorFlow人工智能应用

C#编写TensorFlow人工智能应用

TensorFlowSharp入门使用C#编写TensorFlow人工智能应用学习。

TensorFlow简单介绍

TensorFlow 是谷歌的第二代机器学习系统,按照谷歌所说,在某些基准测试中,TensorFlow的表现比第一代的DistBelief快了2倍。

TensorFlow 内建深度学习的扩展支持,任何能够用计算流图形来表达的计算,都可以使用TensorFlow。任何基于梯度的机器学习算法都能够受益于TensorFlow的自动分化(auto-differentiation)。通过灵活的Python接口,要在TensorFlow中表达想法也会很容易。

TensorFlow 对于实际的产品也是很有意义的。将思路从桌面GPU训练无缝搬迁到手机中运行。

示例Python代码:

import tensorflow as tf
import numpy as np

# Create 100 phony x, y data points in NumPy, y = x * 0.1 + 0.3
x_data = np.random.rand(100).astype(np.float32)
y_data = x_data * 0.1 + 0.3

# Try to find values for W and b that compute y_data = W * x_data + b
# (We know that W should be 0.1 and b 0.3, but TensorFlow will
# figure that out for us.)
W = tf.Variable(tf.random_uniform([1], -1.0, 1.0))
b = tf.Variable(tf.zeros([1]))
y = W * x_data + b

# Minimize the mean squared errors.
loss = tf.reduce_mean(tf.square(y - y_data))
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)

# Before starting, initialize the variables.  We will ‘run‘ this first.
init = tf.global_variables_initializer()

# Launch the graph.
sess = tf.Session()
sess.run(init)

# Fit the line.
for step in range(201):
    sess.run(train)
    if step % 20 == 0:
        print(step, sess.run(W), sess.run(b))

# Learns best fit is W: [0.1], b: [0.3]

使用TensorFlowSharp

GitHub:https://github.com/migueldeicaza/TensorFlowSharp

官方源码库,该项目支持跨平台,使用Mono。

可以使用NuGet 安装TensorFlowSharp,如下:

Install-Package TensorFlowSharp

编写简单应用

使用VS2017新建一个.NET Framework 控制台应用 tensorflowdemo,接着添加TensorFlowSharp 引用。

TensorFlowSharp 包比较大,需要耐心等待。

然后在项目属性中生成->平台目标 改为 x64

打开Program.cs 写入如下代码:

        static void Main(string[] args)
        {
            using (var session = new TFSession())
            {
                var graph = session.Graph;
                Console.WriteLine(TFCore.Version);
                var a = graph.Const(2);
                var b = graph.Const(3);
                Console.WriteLine("a=2 b=3");

                // 两常量加
                var addingResults = session.GetRunner().Run(graph.Add(a, b));
                var addingResultValue = addingResults[0].GetValue();
                Console.WriteLine("a+b={0}", addingResultValue);

                // 两常量乘
                var multiplyResults = session.GetRunner().Run(graph.Mul(a, b));
                var multiplyResultValue = multiplyResults[0].GetValue();
                Console.WriteLine("a*b={0}", multiplyResultValue);
                var tft = new TFTensor(Encoding.UTF8.GetBytes($"Hello TensorFlow Version {TFCore.Version}! LineZero"));
                var hello = graph.Const(tft);
                var helloResults = session.GetRunner().Run(hello);
                Console.WriteLine(Encoding.UTF8.GetString((byte[])helloResults[0].GetValue()));
            }
            Console.ReadKey();
        }        

运行程序结果如下:

TensorFlow C# image recognition

图像识别示例体验

https://github.com/migueldeicaza/TensorFlowSharp/tree/master/Examples/ExampleInceptionInference

下面学习一个实际的人工智能应用,是非常简单的一个示例,图像识别。

新建一个 imagerecognition .NET Framework 控制台应用项目,接着添加TensorFlowSharp 引用。

然后在项目属性中生成->平台目标 改为 x64

接着编写如下代码:

 

这里需要注意的是由于需要下载初始Graph和标签,而且是google的站点,所以得使用一些特殊手段。

最终我随便下载了几张图放到bin\Debug\img

然后运行程序,首先确保bin\Debug\tmp文件夹下有tensorflow_inception_graph.pb及imagenet_comp_graph_label_strings.txt。

人工智能的魅力非常大,本文只是一个入门,复制上面的代码,你没法训练模型等等操作。所以道路还是很远,需一步一步来。

更多可以查看 https://github.com/migueldeicaza/TensorFlowSharp 及 https://github.com/tensorflow/models

参考文档:

TensorFlow 官网:https://www.tensorflow.org/get_started/

TensorFlow 中文社区:http://www.tensorfly.cn/

TensorFlow 官方文档中文版:http://wiki.jikexueyuan.com/project/tensorflow-zh/

时间: 2024-10-05 10:38:01

C#编写TensorFlow人工智能应用的相关文章

TensorFlowSharp入门使用C#编写TensorFlow人工智能应用

TensorFlowSharp入门使用C#编写TensorFlow人工智能应用学习. TensorFlow简单介绍 TensorFlow 是谷歌的第二代机器学习系统,按照谷歌所说,在某些基准测试中,TensorFlow的表现比第一代的DistBelief快了2倍. TensorFlow 内建深度学习的扩展支持,任何能够用计算流图形来表达的计算,都可以使用TensorFlow.任何基于梯度的机器学习算法都能够受益于TensorFlow的自动分化(auto-differentiation).通过灵活

微软ML.NET 0.5开始支持了TensorFlow人工智能模型

微软在5月释出由微软研究院开发.发展了十年的机器学习框架ML.NET,今释出了ML.NET 0.5,最大的更新便是开始支持TensorFlow,开发者可以在ML.NET中直接使用已经训练好的TensorFlow模型,进行评分(Scoring).另外,微软正在开发新的ML.NET API,届时将会弃用现行的LearningPipeline API.适逢.NET Conf 2018,微软顺势释出ML.NET 0.5,距离5月释出的ML.NET 0.1已经距离一段时间,这次带来巨大的更新,微软在ML.

Tensorflow人工智能神经网络学习

下载与安装 你可以使用我们提供的二进制包, 或者使用源代码, 安装 TensorFlow. 二进制安装 TensorFlow Python API 依赖 Python 2.7 版本. 在 Linux 和 Mac 下最简单的安装方式, 是使用 pip 安装. 如果在安装过程中遇到错误, 请查阅 常见问题. 为了简化安装步骤, 建议使用 virtualenv, 教程见 这里. Ubuntu/Linux # 仅使用 CPU 的版本 $ pip install https://storage.googl

上周热点回顾(5.22-5.28)

热点随笔: · Amazing ASP.NET Core 2.0(Savorboard)· 这 5 个前端组件库,可以让你放弃 jQuery UI(葡萄城控件技术团队)· 我要去上海(小屁孩的博客园)· 飘摇的心(野百合也有春天324)· 云计算之路-阿里云上:攻击火上浇油,与云盾玩起了踢皮球(博客园团队)· TensorFlowSharp入门使用C#编写TensorFlow人工智能应用(LineZero)· Github 开源:升讯威 Winform 开源控件库( Sheng.Winform.

深度学习知识点记录

记录深度学习知识点 相关源码:https://coding.net/u/chenxygx/p/FrameworkResearch/git/tree/master/AI 参考: TensorFlow深度学习,一篇文章就够了 TensorFlow.MXNet.PaddlePaddle 对比 TensorFlowSharp入门使用C#编写TensorFlow人工智能应用 &

TensorFlow值得学吗?为什么学Python要必须先学它?

谷歌日前发布了猜画小歌,瞬间火遍了社交网络.其实谷歌还有另一项产品--TensorFlow,也是身边随处可见的谷歌产品. TensorFlow是Google Brain的第二代机器学习系统,已经开源.TensorFlow最初由Google Brain团队开发,用于Google的研究和生产,于2015年11月9日在Apache 2.0开源许可证下发布.作为正式对外开放的免费开源深度学习平台,Google 将自家 Google Brain 在人工智能领域的许多关键研究都对开发者开放. 自发布以来,T

(转) TensorFlow深度学习,一篇文章就够了

TensorFlow深度学习,一篇文章就够了 2016/09/22 · IT技术 · TensorFlow, 深度学习 分享到:6 原文出处: 我爱计算机 (@tobe迪豪 ) 作者: 陈迪豪,就职小米科技,深度学习工程师,TensorFlow代码提交者. TensorFlow深度学习框架 Google不仅是大数据和云计算的领导者,在机器学习和深度学习上也有很好的实践和积累,在2015年年底开源了内部使用的深度学习框架TensorFlow. 与Caffe.Theano.Torch.MXNet等框

问题集录--TensorFlow深度学习

TensorFlow深度学习框架 Google不仅是大数据和云计算的领导者,在机器学习和深度学习上也有很好的实践和积累,在2015年年底开源了内部使用的深度学习框架TensorFlow. 与Caffe.Theano.Torch.MXNet等框架相比,TensorFlow在Github上Fork数和Star数都是最多的,而且在图形分类.音频处理.推荐系统和自然语言处理等场景下都有丰富的应用.最近流行的Keras框架底层默认使用TensorFlow,著名的斯坦福CS231n课程使用TensorFlo

不做恶的google为什么要开源Tensorflow

If TensorFlow is so great, why open source it rather than keep it proprietary? The answer is simpler than you might think: We believe that machine learning is a key ingredient to the innovative products and technologies of the future. Research in thi