可用贪心算法解决的几个基本问题

可用贪心算法解决的几个基本问题

分类: 算法2011-08-24 12:36 950人阅读 评论(0) 收藏 举报

算法活动作业c

关键:看问题有没有贪心选择性质和最优子结构性质。有些问题看似是可以用贪心算法,但是实际用贪心算法却得不到最优解。构造贪心算法后,需要一定的证明来确定它的正确性。常用证明方法:反证法、调整法。

几个基本问题:

1. 活动安排问题。

设有n个活动的集合e={1,2,…,n},其中每个活动都要求使用同一资源,如演讲会场等,而在同一时间内只有一个活动能使用这一资源。每个活动i都有一个要求使用该资源的起始时间si和一个结束时间fi,且si<fi。如果选择了活动i,则它在区间[si,fi]内占用资源。若区间[si,fi]与区间[sj,fj]不相交,则称活动i与活动j是相容的。也就是说,当sj≥fi或si≥fj时,活动i与活动j相容。活动安排问题就是要在所给的活动集合中选出最大的相容活动子集合。

解决方法:先选择结束时间最早的那一个活动,然后往后依次查找结束时间最近的不冲突的活动加入。

2. 可以解决背包问题,不能解决0-1背包问题。

0-1背包问题:

给定n种物品和一个背包。物品i的重量是Wi,其价值为Vi,背包的容量为C。应如何选择装入背包的物品,使得装入背包中物品的总价值最大?

在选择装入背包的物品时,对每种物品i只有2种选择,即装入背包或不装入背包。不能将物品i装入背包多次,也不能只装入部分的物品i。

背包问题:

与0-1背包问题类似,所不同的是在选择物品i装入背包时,可以选择物品i的一部分,而不一定要全部装入背包,1≤i≤n。

解决方法:求每个物品的价值重量比,即价值/重量。然后添加价值重量比最大的物品,添加结束如果未达到重量上限,再添加价值重量比次大的。

3. 最优装载问题

有一批集装箱要装上一艘载重量为c的轮船。其中集装箱i的重量为Wi。最优装载问题要求确定在装载体积不受限制的情况下,将尽可能多的集装箱装上轮船。

解决方法:每次装重量最轻者。

4. 哈夫曼编码

给出现频率高的字符较短的编码,出现频率较低的字符以较长的编码。对每一个字符规定一个0,1串作为其代码,并要求任一字符的代码都不是其它字符代码的前缀。这种编码称为前缀码。

5. Dijkstra算法

给定带权有向图G
=(V,E),其中每条边的权是非负实数。另外,还给定V中的一个顶点,称为源。现在要计算从源到所有其它各顶点的最短路长度。这里路的长度是指路上各边权之和。这个问题通常称为单源最短路径问题。

基本思想是,设置顶点集合S并不断地作贪心选择来扩充这个集合。一个顶点属于集合S当且仅当从源到该顶点的最短路径长度已知。

6. 求最小生成树的Prim算法和Kruskal算法。

7. 多机调度问题。

要求给出一种作业调度方案,使所给的n个作业在尽可能短的时间内由m台机器加工处理完成。

这个问题是NP完全问题,到目前为止还没有有效的解法。采用最长处理时间作业优先的贪心选择策略可以设计出解多机调度问题的较好的近似算法。

解决方案:当n>m时,首先将n个作业依其所需的处理时间从大到小排序。然后依此顺序将作业分配给空闲的处理机。算法所需的计算时间为O(nlogn)。

8. 埃及分数问题。

设a、b为互质正整数,a<b 分数a/b
可用以下的步骤分解成若干个单位分数之和:

步骤一: 用b 除以a, 得商数q1 及余数r1。 (r1=b - a*q1)

步骤二:把a/b 记作:a/b=1/(q1+1)+(a-r)/b(q1+1)

步骤三:重复步骤2,直到分解完毕

例:3/7=1/3+2/21=1/3+1/11+1/231

13/23=1/2+3/46=1/2+1/16+1/368

思路:也是贪心思维,以 b/a取整+1
作为一个分解因子,其实是选取了值最大的分子为1的分解。

时间: 2024-12-20 18:32:40

可用贪心算法解决的几个基本问题的相关文章

贪心算法解决加油站选择问题(未解决)

//贪心算法解决加油站选择问题 //# include<iostream> # include<stdio.h> using namespace std; # include<algorithm> struct Node { float p, d; }; bool cmp(Node a, Node b) { return a.d < b.d; } int main() { Node node[501]; float Cmax, D, Davg, distance,

贪心算法解决会场安排问题

贪心算法解决会场安排问题. [问题描述] 假设要在足够多的会场里安排一批活动,并希望使用尽可能少的会场.(这个问题实际上是著名的图着色问题.若将每一个活动作为图的一个顶点,不相容活动间用边相连.使相邻顶点有不同颜色的最小着色数,相应于要找的最小会场数.) [数据输入] 由文件input.txt给出输入数据,第一行又一个正整数K,表示有K个待安排的活动. 接下来有K行数据,每行有两个正整数,分别表示K个待安排的活动的开始时间和结束时间. [结束输出] 输出最少会场数. input.txt    

贪心算法解决钱币找零问题

using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; namespace Coin { class Program { static void Main(string[] args) { int[] value = new int[] { 1, 2, 5, 10, 20, 50, 100 }; int[] count =

五大算法思想—贪心算法

贪心法理解 贪心法在解决问题的策略上目光短浅,只根据当前已有的信息就做出选择,而且一旦做出了选择,不管将来有什么结果,这个选择都不会改变.换言之,贪心法并不是从整体最优考虑,它所做出的选择只是在某种意义上的局部最优. 一句话:不求最优,只求可行解. 判断贪心法 对于一个具体的问题,怎么知道是否可用贪心算法解此问题,以及能否得到问题的最优解? 我们可以根据贪心法的2个重要的性质去证明:贪心选择性质和最优子结构性质. 1.贪心选择性质 什么叫贪心选择?从字义上就是贪心也就是目光短线,贪图眼前利益,在

从 活动选择问题 看动态规划和贪心算法的区别与联系

这篇文章主要用来记录我对<算法导论> 贪心算法一章中的“活动选择问题”的动态规划求解和贪心算法求解 的思路和理解. 主要涉及到以下几个方面的内容: ①什么是活动选择问题---粗略提下,详细请参考<算法导论> ②活动选择问题的DP(Dynamic programming)求解--DP求解问题的思路 ③活动选择问题的贪心算法求解 ④为什么这个问题可以用贪心算法求解? ⑤动态规划与贪心算法的一些区别与联系 ⑥活动选择问题的DP求解的JAVA语言实现以及时间复杂度分析 ⑦活动选择问题的Gr

贪心算法之最优装载

贪心算法通过一系列的选择来得到问题的解.它所做的每一个选择都是当前状态下局部最好选择.从许多的贪心算法求解的问题可以看到可用贪心算法求解的问题一般具有两个重要的性质:贪心选择性质和最优子结构性质. 1.贪心选择性质 贪心选择性质是 指所求问题的整体最优解可以通过一系列局部最优的选择,即贪心选择来达到.与动态规划算法的不同之处是贪心算法只依赖在当前状态下做出最优选择,然后再去解做出这个选择后产生的相应的子问题.贪心算法依赖于以往做出的选择,但是绝不依赖未来做出的选择.所以贪心算法是自顶向下解决问题

数据结构之贪心算法(背包问题的思考)-(十)

贪心策略.关于贪心算法的思考,思考过程都放在代码中了. package com.lip.datastructure; /** *贪心算法:装箱问题的思考 * @author Lip *装箱问题可以是时间调问题的延伸,当一个箱子没有容积限制,那么就是时间调度问题 *在时间调度问题中:存在两个可以讨论的问题.1.平均最短时间 2.总的最短时间 *这两个问题都和装箱问题中问题如此类似. */ /* * 上面是我理解的装箱问题,本来是想说背包问题的 * 背包问题的描述:有N件物品和一个容量为V的背包.第

1、贪心算法

body { font-family: 'Microsoft YaHei UI', 'Microsoft YaHei', SimSun, 'Segoe UI', Tahoma, Helvetica, sans-serif, 'Microsoft YaHei', Georgia, Helvetica, Arial, sans-serif, 宋体, PMingLiU, serif; font-size: 10.5pt; line-height: 1.5; }html, body { }h1 { fo

活动安排问题(贪心算法)

问题描述: 有n个活动的活动集合E ,其中每一个活动都要求使用同一个资源,而在同一个时刻内资源只能被一个活动使用,每一个活动都有开始是时间和结束时间,要求从活动集合E中选出m个活动,使着m个活动都能顺利进行,即也就是每个活动的活动时间都互相不交叉,求m的最大值和 被选中的活动序号. 例如输入: 活动编号   活动开始时间    活动结束时间 1                1                       4 2                3