蒙特卡罗方法入门

蒙特卡罗方法入门

原文出处: 阮一峰的日志(@ruanyf)   欢迎分享原创到伯乐头条

本文通过五个例子,介绍蒙特卡罗方法(Monte Carlo Method)。

一、概述

蒙特卡罗方法是一种计算方法。原理是通过大量随机样本,去了解一个系统,进而得到所要计算的值。

它非常强大和灵活,又相当简单易懂,很容易实现。对于许多问题来说,它往往是最简单的计算方法,有时甚至是唯一可行的方法。

它诞生于上个世纪40年代美国的”曼哈顿计划”,名字来源于赌城蒙特卡罗,象征概率。

二、π的计算

第一个例子是,如何用蒙特卡罗方法计算圆周率π。

正方形内部有一个相切的圆,它们的面积之比是π/4。

现在,在这个正方形内部,随机产生10000个点(即10000个坐标对 (x, y)),计算它们与中心点的距离,从而判断是否落在圆的内部。

如果这些点均匀分布,那么圆内的点应该占到所有点的 π/4,因此将这个比值乘以4,就是π的值。通过R语言脚本随机模拟30000个点,π的估算值与真实值相差0.07%。

三、积分的计算

上面的方法加以推广,就可以计算任意一个积分的值。

比如,计算函数 y = x2 在 [0, 1] 区间的积分,就是求出下图红色部分的面积。

这个函数在 (1,1) 点的取值为1,所以整个红色区域在一个面积为1的正方形里面。在该正方形内部,产生大量随机点,可以计算出有多少点落在红色区域(判断条件 y < x2)。这个比重就是所要求的积分值。

用Matlab模拟100万个随机点,结果为0.3328。

四、交通堵塞

蒙特卡罗方法不仅可以用于计算,还可以用于模拟系统内部的随机运动。下面的例子模拟单车道的交通堵塞。

根据 Nagel-Schreckenberg 模型,车辆的运动满足以下规则。

  • 当前速度是 v 。
  • 如果前面没车,它在下一秒的速度会提高到 v + 1 ,直到达到规定的最高限速。
  • 如果前面有车,距离为d,且 d < v,那么它在下一秒的速度会降低到 d – 1 。
  • 此外,司机还会以概率 p 随机减速, 将下一秒的速度降低到 v – 1 。

在一条直线上,随机产生100个点,代表道路上的100辆车,另取概率 p 为 0.3 。

上图中,横轴代表距离(从左到右),纵轴代表时间(从上到下),因此每一行就表示下一秒的道路情况。

可以看到,该模型会随机产生交通拥堵(图形上黑色聚集的部分)。这就证明了,单车道即使没有任何原因,也会产生交通堵塞。

五、产品厚度

某产品由八个零件堆叠组成。也就是说,这八个零件的厚度总和,等于该产品的厚度。

已知该产品的厚度,必须控制在27mm以内,但是每个零件有一定的概率,厚度会超出误差。请问有多大的概率,产品的厚度会超出27mm?

取100000个随机样本,每个样本有8个值,对应8个零件各自的厚度。计算发现,产品的合格率为99.9979%,即百万分之21的概率,厚度会超出27mm。

六、证券市场

证券市场有时交易活跃,有时交易冷清。下面是你对市场的预测。

  • 如果交易冷清,你会以平均价11元,卖出5万股。
  • 如果交易活跃,你会以平均价8元,卖出10万股。
  • 如果交易温和,你会以平均价10元,卖出7.5万股。

已知你的成本在每股5.5元到7.5元之间,平均是6.5元。请问接下来的交易,你的净利润会是多少?

取1000个随机样本,每个样本有两个数值:一个是证券的成本(5.5元到7.5元之间的均匀分布),另一个是当前市场状态(冷清、活跃、温和,各有三分之一可能)。

模拟计算得到,平均净利润为92, 427美元。

七,参考链接

时间: 2024-10-20 09:52:17

蒙特卡罗方法入门的相关文章

(转)阮一峰-蒙特卡罗方法入门

本文转载自阮一峰-蒙特卡罗方法入门 本文通过五个例子,介绍蒙特卡罗方法(Monte Carlo Method). 一.概述 蒙特卡罗方法是一种计算方法.原理是通过大量随机样本,去了解一个系统,进而得到所要计算的值. 它非常强大和灵活,又相当简单易懂,很容易实现.对于许多问题来说,它往往是最简单的计算方法,有时甚至是唯一可行的方法. 它诞生于上个世纪40年代美国的"曼哈顿计划",名字来源于赌城蒙特卡罗,象征概率. 二.π的计算 第一个例子是,如何用蒙特卡罗方法计算圆周率π. 正方形内部有

蒙特卡罗方法计算圆周率

蒙特卡罗方法计算圆周率 前几天读到了一篇网志:蒙特卡罗方法入门,http://www.ruanyifeng.com/blog/2015/07/monte-carlo-method.html 其中介绍了用概率计算圆周率的方法,所以就用程序做了以下尝试. 作为常量的PI值的近似在Math.PI中为3.141592653589793. Ⅰ.方形中的所有像素计算 package yumu.probability.montecarlo; public class CalculatePI { private

误码率仿真,蒙特卡罗方法,置信度

本文将介绍利用蒙特卡罗方法对误码率进行仿真的基本原理和基本原则. 1. 简介     误码率是通信系统性能评价的一个重要指标,在给定信道.编译码方式下,误码率是一个固定取值.少部分情况下,可以通过理论推导得到理论的误码率,但是在大多数情况下,理论误码率无法推得,这时往往考虑采用蒙特卡罗方法对误码率进行仿真.(误比特率.误码率同理)     蒙特卡罗方法是一种通过随机采样获得数值解的一类计算方法.误码率,即给定条件下传输的错误概率,可以近似计算为错误码数和总码数之间的比值,因此很容易通过蒙特卡罗方

用蒙特卡罗方法计算五人传球问题

蒙特卡罗方法百度解释http://baike.baidu.com/link?url=XwVnK6P_gip61_P9RzC9u6T4KQP5hmoZIvx57XBM66hPBONRRl3-yAwldGr3orFe 问题描述: 有A B C D E 五个人,围成一圈,开始球在A的手上,然后由A向与自己相邻的两边的某一人传球,然后要求计算球被传十次,最后又回到A手中的概率. 如上图所示,A只能把球传给B或者E,其几率是相同的. 对每个人来说把球传给左边或者右边的人的几率都是相同的,且为1/2: 这样

蒙特卡罗方法python简单实现

蒙特卡罗方法是一种计算方法.原理是通过大量随机样本,去了解一个系统,进而得到所要计算的值. 1.估算pi值 import random n = 10000 k = 0 for i in range(n): x = random.uniform(-1,1) y = random.uniform(-1,1) if x**2 + y**2 <1: k +=1 print(4*float(k)/float(n)) 2.计算y=x^2在[0,1]的积分 import random n = 1000 k =

C#扩展方法入门

扩展方法被定义为静态方法,但它们是通过实例方法语法进行调用的. 它们的第一个参数指定该方法作用于哪个类型,并且该参数以 this 修饰符为前缀. 仅当你使用 using 指令将命名空间显式导入到源代码中之后,扩展方法才位于范围中. 下面的示例演示为 SystemString 类定义的一个扩展方法. 请注意,它是在非嵌套的.非泛型静态类内部定义的: namespace ExtensionMethods { public static class MyExtensions { public stat

MCMC(一)蒙特卡罗方法

MCMC(一)蒙特卡罗方法 MCMC(二)马尔科夫链(待填坑) MCMC(三)M-H采样和Gibbs采样(待填坑) 作为一种随机采样方法,马尔科夫链蒙特卡罗(Markov Chain Monte Carlo,以下简称MCMC)在机器学习,深度学习以及自然语言处理等领域都有广泛的应用,是很多复杂算法求解的基础.比如我们前面讲到的分解机(Factorization Machines)推荐算法,还有前面讲到的受限玻尔兹曼机(RBM)原理总结,都用到了MCMC来做一些复杂运算的近似求解.下面我们就对MC

[数学建模]蒙特卡罗方法

1.概念 蒙特卡罗方法(随机取样法)是一种计算方法.原理是通过大量随机样本,去了解一个系统,进而得到所要计算的值. 2.两个应用例子 例子1:求π的值. 正方形内部有一个相切的圆,它们的面积之比是π/4.现在,在这个正方形内部,随机产生1000000个点(即1000000个坐标对 (x, y)),计算它们与中心点的距离,从而判断是否落在圆的内部.如果这些点均匀分布,那么圆内的点应该占到所有点的 π/4,因此将这个比值乘以4,就是π的值. MATLAB实现: N=1000000;    %随机点的

蒙特卡罗方法(Monte Carlo method)

蒙特卡罗方法(Monte Carlo method) 蒙特卡罗方法概述   蒙特卡罗方法又称统计模拟法.随机抽样技术,是一种随机模拟方法,以概率和统计理论方法为基础的一种计算方法,是使用随机数(或更常见的伪随机数)来解决很多计算问题的方法.将所求解的问题同一定的概率模型相联系,用电子计算机实现统计模拟或抽样,以获得问题的近似解.为象征性地表明这一方法的概率统计特征,故借用赌城蒙特卡罗命名. 蒙特卡罗方法的提出   蒙特卡罗方法于20世纪40年代美国在第二次世界大战中研制原子弹的"曼哈顿计划&qu