逆变换采样

逆变换采样(英语:inverse transform sampling),又称为逆采样(inversion sampling)、逆概率积分变换(inverse probability integral transform)、逆变换法(inverse transformation method)、斯米尔诺夫变换(Smirnov transform)、黄金法则(golden rule)等,是伪随机数采样的一种基本方法。在已知任意概率分布累积分布函数时,可用于从该分布中生成随机样本。

Inverse transform sampling反变换采样法

https://blog.csdn.net/eric2016_lv/article/details/81191430

逆采样(Inverse Sampling)和拒绝采样(Reject Sampling)原理详解

https://blog.csdn.net/anshuai_aw1/article/details/84840446

https://baike.baidu.com/item/%E9%80%86%E5%8F%98%E6%8D%A2%E9%87%87%E6%A0%B7/22934385?fr=aladdin

原文地址:https://www.cnblogs.com/emanlee/p/12369485.html

时间: 2024-08-02 00:06:52

逆变换采样的相关文章

蒙特卡洛采样之拒绝采样(Reject Sampling)

引子 蒙特卡洛(Monte Carlo)方法是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为基础的数值计算方法.它的核心思想就是使用随机数(或更常见的伪随机数)来解决一些复杂的计算问题. 当所求解问题可以转化为某种随机分布的特征数(比如随机事件出现的概率,或者随机变量的期望值等)时,往往就可以考虑使用蒙特卡洛方法.通过随机抽样的方法,以随机事件出现的频率估计其概率,或者以抽样的数字特征估算随机变量的数字特征,并将其作为问题的解.这种方法多用于求解复杂的高

马尔科夫链蒙特卡洛采样(MCMC)入门

1.从随机变量分布中采样 研究人员提出的概率模型对于分析方法来说往往过于复杂.越来越多的研究人员依赖数学计算的方法处理复杂的概率模型,研究者通过使用计算的方法,摆脱一些分析技术所需要的不切实际的假设.(如,正态和独立) 大多数近似方法的关键是在于从分布中采样的能力,我们需要通过采样来预测特定的模型在某些情况下的行为,并为潜在的变量(参数)找到合适的值以及将模型应用到实验数据中,大多数采样方法都是将复杂的分布中抽样的问题转化到简单子问题的采样分布中. 本章,我们解释两种采样方法:逆变换方法(the

机器学习算法 之DCGAN

目录 1.基本介绍 2.模型 3.优缺点/其他 参考 1.基本介绍 DCGAN是生成对抗网络GAN中一种常见的模型结构.其中的生成器和判别器都是神经网络模型. GAN是一种生成式对抗网络,即通过对抗的方式,去学习数据分布的生成式模型.所谓的对抗,指的是生成网络和判别网络的互相对抗.生成网络尽可能生成逼真样本,判别网络则尽可能去判别该样本是真实样本,还是生成的假样本. 优化目标函数为:\[min_{G} max_{D} V(D,G) = min_{G} max_{D} E_{x~P_{data}(

百面机器学习

百面机器学习是一本记录面试问题的书,一方面,学习里面的问题和解答有助于我们更好的掌握机器学习,另一方面,以目录为索引,可以扩展我们的知识面,掌握应届生从事机器学习必备的技能.下面以章节为单位,记录书本的大纲内容. 第1章 特征工程 01 为什么要对数值类型的特征做归一化? 对数值类型的特征做归一化可以将所有特征统一到一个大致相同的区间,加快梯度下降更新速度.最常用的有:线性函数归一化(Min-Max Scaling)(将原始数据映射到[0,1]的范围)以及零均值归一化(Z-Score Norma

😆 机器学习采样方法大全

?? Index 数据采样的原因 常见的采样算法 失衡样本的采样 采样的Python实现 ?? 数据采样的原因 其实我们在训练模型的过程,都会经常进行数据采样,为了就是让我们的模型可以更好的去学习数据的特征,从而让效果更佳.但这是比较浅层的理解,更本质上,数据采样就是对随机现象的模拟,根据给定的概率分布从而模拟一个随机事件.另一说法就是用少量的样本点去近似一个总体分布,并刻画总体分布中的不确定性. 因为我们在现实生活中,大多数数据都是庞大的,所以总体分布可能就包含了无数多的样本点,模型是无法对这

图形学中的贴图采样、走样与反走样等

计算机图形学中不可避免的会涉及到图像分析与处理的相关知识,前些时间也重温了下常用到的采样.重建以及纹理贴图等内容,并对其中的走样与反走样有了更多的认识,这里小结一下. 1. 基本问题 信号的采样与重建过程中首先面临着两个基本的问题: 给定一个连续的信号g(x)以及它的离散采样信号gs(x),能否通过gs(x)来完整的描述g(x) 的信息: 如果可以,如何通过gs(x)来重建出原始信号g(x). 这些通过对信息进行频域的分析即可得到相应的结论. 2. 采样 将一处于空间域(或时域)内的信号向频域进

[离散时间信号处理学习笔记] 11. 连续时间信号的采样与重构

这一节主要讨论采样定理,在<傅里叶变换及其应用及其学习笔记>中有进行过推导与讲解,因此下面的内容也大同小异.不过如果是从<离散时间信号处理>这一本书的内容开始学习到这一节,则应先学习本文内容所需要的一些前置知识:傅里叶变换(连续时间),主要用到的是脉冲函数$\delta$,以及周期脉冲函数Ш的傅里叶变换与相关性质. 周期采样 假设有连续信号$x_c(t)$,我们需要通过对该信号进行采样才能得到离散信号,即样本序列$x[n]$.连续信号与离散信号有以下关系: $x[n] = x_c(

Hulu机器学习问题与解答系列 | 十四:如何对高斯分布进行采样

欢迎回到"采样"系列~ 今天的内容是 [如何对高斯分布进行采样] 场景描述 高斯分布,又称正态分布,是一个在数学.物理及工程领域都非常重要的概率分布.在实际应用中,我们经常需要对高斯分布进行采样.虽然在很多编程语言中,直接调用一个函数就可以生成高斯分布随机数,但了解其中的具体算法能够加深我们对相关概率统计知识的理解:此外,高斯分布的采样方法有多种,通过展示不同的采样方法在高斯分布上的具体操作以及性能对比,我们会对这些采样方法有更直观的印象. 问题描述 如果让你来实现一个高斯分布随机数生

【信号与系统】05 - 滤波、采样和通信

本篇将举三个重要的理论或领域,以展示之前信号理论的应用和意义.其中滤波理论和通信系统是非常大的应用领域,这里仅对基础的概念和方法做个介绍,以作入门之用. 1. 滤波系统 1.1 滤波器 在系统函数的性质中,我们看到信号在时域上的微分.积分.卷积等复杂运算,在频域都变成了代数运算.这说明分析和使用信号的频域,有其天然的优势,也会带来更广泛的应用.当然,频域的操作最终都体现在时域上,注意讨论其相互关系和平衡,有时也是必需的.滤波系统主要就是以信号的频域为操作对象,具体来说就是调整不同基波的波幅.相位