PAT Advanced 1053 Path of Equal Weight (30) [树的遍历]

题目

Given a non-empty tree with root R, and with weight Wi assigned to each tree node Ti. The weight of a path from R to L is defined to be the sum of the weights of all the nodes along the path from R to any leaf node L. Now given any weighted tree, you are supposed to find all the paths with their weights equal to a given number. For example, let’s consider the tree showed in Figure 1: for each node, the upper number is the node ID which is a two-digit number, and the lower number is the weight of that node. Suppose that the given number is 24, then there exists 4 diferent paths which have the same given weight: {10 5 2 7}, {10 4 10}, {10 3 3 6 2} and {10 3 3 6 2}, which correspond to the red edges in Figure 1.
Input Specification:
Each input file contains one test case. Each case starts with a line containing 0 < N <= 100, the number of nodes in a tree, M (< N), the number of non-leaf nodes, and 0 < S < 230, the given weight number. The next line contains N positive numbers where Wi (<1000) corresponds to the tree node Ti. Then M lines follow, each in the format:
ID K ID[1] ID[2] … ID[K]
where ID is a two-digit number representing a given non-leaf node, K is the number of its children, followed by a sequence of two-digit ID’s of its children. For the sake of simplicity, let us fix the root ID to be 00.
Output Specification:
For each test case, print all the paths with weight S in non-increasing order. Each path occupies a line with printed weights from the root to the leaf in order. All the numbers must be separated by a space with no extra space at the end of the line.
Note: sequence {A1, A2, …, An} is said to be greater than sequence {B1, B2, …, Bm} if there exists 1 <= k < min{n, m} such that Ai = Bi for i=1, … k, and Ak+1 > Bk+1.
Sample Input:
20 9 24
10 2 4 3 5 10 2 18 9 7 2 2 1 3 12 1 8 6 2 2
00 4 01 02 03 04
02 1 05
04 2 06 07
03 3 11 12 13
06 1 09
07 2 08 10
16 1 15
13 3 14 16 17
17 2 18 19
Sample Output:
10 5 2 7
10 4 10
10 3 3 6 2
10 3 3 6 2

题目分析

已知非叶子节点的所有子节点,已知每个节点的权重,已知一个权重和S,求权重和等于S的路径(该路径必须是从root到叶子节点)
注:多个满足条件的路径,必须非升序打印,序列A>序列B的条件为:A1~Ai与B1~Bi相等,但是Ai+1>Bi+1

解题思路

  1. 定义节点结构体(权重:w,子节点cds),int path[n]记录从root到当前节点路径
  2. 题目要求权重非增序输出,每个节点的所有节点信息输入完成后,对所有子节点进行排序(权重由大到小,权重最大的节点排在最左边),深度优先遍历时会从最左边路径开始,可保证最后输出的路径满足非升序条件
  3. dfs深度优先遍历树,参数numNode记录当前path中元素的个数,参数sum记录从root到当前节点的权重和
    3.1 若权重和>s,退出不再处理该路径
    3.2 若权重和==s
    3.2.1 若当前节点是叶子节点,打印路径
    3.2.2 若当前节点是非叶子节点,退出不再处理该路径

Code

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
const int maxn=101;
int s,path[maxn];
struct node {
    int w;
    vector<int> cds;
} nds[maxn];
bool cmp(int a,int b) {
    return nds[a].w>nds[b].w;
}
// index当前处理节点在nds中的下标,numNode当前path数组中元素个数,sum从root到当前节点权重和
void dfs(int index, int numNode, int sum) {
    if(sum>s)return; //权重和超过s
    if(sum==s) {
        if(nds[index].cds.size()!=0)return; //权重和为s,但不是叶子节点
        //满足条件,权重和为s,且为叶子节点
        for(int i=0; i<numNode; i++) {
            if(i!=0)printf(" ");
            printf("%d",nds[path[i]].w);
            if(i==numNode-1)printf("\n");
        }
        return;
    }
    for(int i=0; i<nds[index].cds.size(); i++) {
        int cdi = nds[index].cds[i]; //子节点在nds中的下标
        path[numNode] = cdi;
        dfs(cdi, numNode+1, sum+nds[cdi].w);
    }
}
int main(int argc,char * argv[]) {
    int n,m,cn,id,cid;
    scanf("%d %d %d",&n,&m,&s);
    for(int i=0; i<n; i++) {
        scanf("%d",&nds[i].w);
    }
    for(int i=0; i<m; i++) {
        scanf("%d %d",&id,&cn);
        for(int j=0; j<cn; j++) {
            scanf("%d",&cid);
            nds[id].cds.push_back(cid);
        }
        sort(nds[id].cds.begin(),nds[id].cds.end(),cmp);
    }
    path[0]=0;
    dfs(0,1,nds[0].w);
    return 0;
}

原文地址:https://www.cnblogs.com/houzm/p/12326048.html

时间: 2024-11-05 14:52:08

PAT Advanced 1053 Path of Equal Weight (30) [树的遍历]的相关文章

PAT:1053. Path of Equal Weight (30) AC

#include<stdio.h> #include<vector> #include<queue> #include<algorithm> using namespace std; const int MAX=1010; int n,m; //n个节点,m个非叶子节点 long long int S; //待测权值 long long int weight[MAX]; //每个节点的权值 vector<int> child[MAX]; //存储

PAT 1053. Path of Equal Weight (30)

1053. Path of Equal Weight (30) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue Given a non-empty tree with root R, and with weight Wi assigned to each tree node Ti. The weight of a path from R to Lis defined to be the sum of the

1053. Path of Equal Weight (30)

dfs函数携带vector形参记录搜索路径 时间限制 10 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue Given a non-empty tree with root R, and with weight Wi assigned to each tree node Ti. The weight of a path from R to L is defined to be the sum of the weights of

PAT (Advanced Level) 1053. Path of Equal Weight (30)

简单DFS #include<cstdio> #include<cstring> #include<cmath> #include<vector> #include<map> #include<queue> #include<stack> #include<string> #include<algorithm> using namespace std; const int maxn=100+10;

PAT甲题题解-1053. Path of Equal Weight (30)-dfs

由于最后输出的路径排序是降序输出,相当于dfs的时候应该先遍历w最大的子节点. 链式前向星的遍历是从最后add的子节点开始,最后添加的应该是w最大的子节点, 因此建树的时候先对child按w从小到大排序,然后再add建边. 水题一个,不多说了. #include <iostream> #include <algorithm> #include <cstdio> #include <string.h> using namespace std; const in

1053 Path of Equal Weight (30分)(并查集)

Given a non-empty tree with root R, and with weight W?i?? assigned to each tree node T?i??. The weight of a path from R to L is defined to be the sum of the weights of all the nodes along the path from R to any leaf node L. Now given any weighted tre

1053 Path of Equal Weight (30分)

1. 题目 2. 思路 定义结构体, 并且使用下标作为序号 struct node{ string weight; vector<int> children; }nodes[101]; 读取数据,并且排序children,方便输出 使用先序遍历,处理数据 3. 注意点 权重的值很大,用字符串处理,要自己写加法和比较函数 4. 代码 #include<cstdio> #include<algorithm> #include<vector> #include&l

PAT Advanced Level 1053 Path of Equal Weight

1053 Path of Equal Weight (30)(30 分) Given a non-empty tree with root R, and with weight W~i~ assigned to each tree node T~i~. The weight of a path from R to L is defined to be the sum of the weights of all the nodes along the path from R to any leaf

pat1053. Path of Equal Weight (30)

1053. Path of Equal Weight (30) 时间限制 10 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue Given a non-empty tree with root R, and with weight Wi assigned to each tree node Ti. The weight of a path from R to L is defined to be the sum of the