You have a total of n coins that you want to form in a staircase shape, where every k-th row must have exactly k coins.
Given n, find the total number of full staircase rows that can be formed.
n is a non-negative integer and fits within the range of a 32-bit signed integer.
Example 1:
n = 5 The coins can form the following rows: ¤ ¤ ¤ ¤ ¤ Because the 3rd row is incomplete, we return 2.
Example 2:
n = 8 The coins can form the following rows: ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ Because the 4th row is incomplete, we return 3.
题目大意:
用金币累一个楼梯,形式如下:
1
23
456
78910
就是说第n行有n个硬币,以此类推。问你最多能累多少层,多余出来且不足的不算,例如5的话返回2,8的话返回3。
分析:
这题很明显是一道数学题,我们首先观察规律
1
2 3
4 5 6
7 8 9 10
我们首先观察每一层的首项:
1 2 4 7
显然地,这是一个数列,并且首项间的关系为
所以,上下数列形式为:
上下累加得:
所以 :
所以我们就知道了每一层的首项的大小。
所以每一行的尾项为 An + n-1,得:
这时候,我们就可以根据n求出n行的首项(An0)和尾项(Ann)。
我们知道给出一个x,它一定是落在An0和Ann之间的。假设刚好落在(Ann)的时候。得出方程
根据求根公式:
即可求出n
(注意,此时的n是刚好落在Ann的时候,我们需要对结果向下取整)
JAVA CODE:
public class Solution { public int arrangeCoins(int n) { if (n == 0) { return 0; } long delta = (8L * n) + 1; int x = (int) (-1.0 + Math.sqrt(delta)) >> 1; return (int) x; } public static void main(String[] args) { Solution s = new Solution(); System.out.println(s.arrangeCoins(8)); } }
时间: 2024-10-10 22:27:09