1927: [Sdoi2010]星际竞速
Time Limit: 1 Sec
Memory Limit: 256 MB
题目连接
http://www.lydsy.com/JudgeOnline/problem.php?id=1927
Description
10 年一度的银河系赛车大赛又要开始了。作为全银河最盛大的活动之一, 夺得这个项目的冠军无疑是很多人的梦想,来自杰森座 α星的悠悠也是其中之一。 赛车大赛的赛场由 N 颗行星和M条双向星际航路构成,其中每颗行星都有 一个不同的引力值。大赛要求车手们从一颗与这 N 颗行星之间没有任何航路的 天体出发,访问这 N 颗行星每颗恰好一次,首先完成这一目标的人获得胜利。 由于赛制非常开放,很多人驾驶着千奇百怪的自制赛车来参赛。这次悠悠驾 驶的赛车名为超能电驴,这是一部凝聚了全银河最尖端科技结晶的梦幻赛车。作 为最高科技的产物,超能电驴有两种移动模式:高速航行模式和能力爆发模式。 在高速航行模式下,超能电驴会展开反物质引擎,以数倍于光速的速度沿星际航 路高速航行。在能力爆发模式下,超能电驴脱离时空的束缚,使用超能力进行空 间跳跃——在经过一段时间的定位之后,它能瞬间移动到任意一个行星。 天不遂人愿,在比赛的前一天,超能电驴在一场离子风暴中不幸受损,机能 出现了一些障碍:在使用高速航行模式的时候,只能由每个星球飞往引力比它大 的星球,否则赛车就会发生爆炸。 尽管心爱的赛车出了问题,但是悠悠仍然坚信自己可以取得胜利。他找到了 全银河最聪明的贤者——你,请你为他安排一条比赛的方案,使得他能够用最少 的时间完成比赛。
Input
第一行是两个正整数 N, M。 第二行 N 个数 A1~AN, 其中Ai表示使用能力爆发模式到达行星 i 所需的定位 时间。 接下来 M行,每行 3个正整数ui, vi, wi,表示在编号为 ui和vi的行星之间存 在一条需要航行wi时间的星际航路。 输入数据已经按引力值排序,也就是编号小的行星引力值一定小,且不会有 两颗行星引力值相同。
Output
仅包含一个正整数,表示完成比赛所需的最少时间。
Sample Input
3 3
1 100 100
2 1 10
1 3 1
2 3 1
Sample Output
12
HINT
说明:先使用能力爆发模式到行星 1,花费时间 1。
然后切换到高速航行模式,航行到行星 2,花费时间10。
之后继续航行到行星 3完成比赛,花费时间 1。
虽然看起来从行星 1到行星3再到行星 2更优,但我们却不能那样做,因为
那会导致超能电驴爆炸。
对于 30%的数据 N≤20,M≤50;
对于 70%的数据 N≤200,M≤4000;
对于100%的数据N≤800, M≤15000。输入数据中的任何数都不会超过106
。
输入数据保证任意两颗行星之间至多存在一条航道,且不会存在某颗行星到
自己的航道。
题意
题解:
比较裸的费用流啦,注意拆点
S-v-v‘-t
一开始跳跃的,就直接从S - V‘就好了,费用为跳跃时间,建边的,就让编号小的v指向编号大的v‘,cap为1 cost为这条路的长度就行了
然后跑一发费用流
代码:
//qscqesze #include <cstdio> #include <cmath> #include <cstring> #include <ctime> #include <iostream> #include <algorithm> #include <set> #include <bitset> #include <vector> #include <sstream> #include <queue> #include <typeinfo> #include <fstream> #include <map> #include <stack> typedef long long ll; using namespace std; //freopen("D.in","r",stdin); //freopen("D.out","w",stdout); #define sspeed ios_base::sync_with_stdio(0);cin.tie(0) #define maxn 200500 #define mod 1001 #define eps 1e-9 #define pi 3.1415926 int Num; //const int inf=0x7fffffff; const ll inf=999999999; inline ll read() { ll x=0,f=1;char ch=getchar(); while(ch<‘0‘||ch>‘9‘){if(ch==‘-‘)f=-1;ch=getchar();} while(ch>=‘0‘&&ch<=‘9‘){x=x*10+ch-‘0‘;ch=getchar();} return x*f; } //************************************************************************************* const int MAXN = 10000; const int MAXM = 100000; const int INF = 0x3f3f3f3f; struct Edge { int to, next, cap, flow, cost; int x, y; } edge[MAXM],HH[MAXN],MM[MAXN]; int head[MAXN],tol; int pre[MAXN],dis[MAXN]; bool vis[MAXN]; int N, M; char map[MAXN][MAXN]; void init() { N = MAXN; tol = 0; memset(head, -1, sizeof(head)); } void addedge(int u, int v, int cap, int cost)//左端点,右端点,容量,花费 { edge[tol]. to = v; edge[tol]. cap = cap; edge[tol]. cost = cost; edge[tol]. flow = 0; edge[tol]. next = head[u]; head[u] = tol++; edge[tol]. to = u; edge[tol]. cap = 0; edge[tol]. cost = -cost; edge[tol]. flow = 0; edge[tol]. next = head[v]; head[v] = tol++; } bool spfa(int s, int t) { queue<int>q; for(int i = 0; i < N; i++) { dis[i] = INF; vis[i] = false; pre[i] = -1; } dis[s] = 0; vis[s] = true; q.push(s); while(!q.empty()) { int u = q.front(); q.pop(); vis[u] = false; for(int i = head[u]; i != -1; i = edge[i]. next) { int v = edge[i]. to; if(edge[i]. cap > edge[i]. flow && dis[v] > dis[u] + edge[i]. cost ) { dis[v] = dis[u] + edge[i]. cost; pre[v] = i; if(!vis[v]) { vis[v] = true; q.push(v); } } } } if(pre[t] == -1) return false; else return true; } //返回的是最大流, cost存的是最小费用 int minCostMaxflow(int s, int t, int &cost) { int flow = 0; cost = 0; while(spfa(s,t)) { int Min = INF; for(int i = pre[t]; i != -1; i = pre[edge[i^1]. to]) { if(Min > edge[i]. cap - edge[i]. flow) Min = edge[i]. cap - edge[i]. flow; } for(int i = pre[t]; i != -1; i = pre[edge[i^1]. to]) { edge[i]. flow += Min; edge[i^1]. flow -= Min; cost += edge[i]. cost * Min; } flow += Min; } return flow; }int main() { init();//注意 int beg = 5002;//超级起点 int end = 5000;//超级汇点 int n=read(),m=read(); for(int i=1;i<=n;i++) { int x=read(); addedge(beg,i,1,0); addedge(beg,n+i,1,x); addedge(n+i,end,1,0); } for(int i=1;i<=m;i++) { int x=read(),y=read(),z=read(); if(x>y)swap(x,y); addedge(x,n+y,1,z); } int ans = 0; minCostMaxflow(beg,end,ans); printf("%d\n",ans); }