BZOJ 1927: [Sdoi2010]星际竞速 费用流

1927: [Sdoi2010]星际竞速

Time Limit: 1 Sec

Memory Limit: 256 MB

题目连接

http://www.lydsy.com/JudgeOnline/problem.php?id=1927

Description

10 年一度的银河系赛车大赛又要开始了。作为全银河最盛大的活动之一, 夺得这个项目的冠军无疑是很多人的梦想,来自杰森座 α星的悠悠也是其中之一。 赛车大赛的赛场由 N 颗行星和M条双向星际航路构成,其中每颗行星都有 一个不同的引力值。大赛要求车手们从一颗与这 N 颗行星之间没有任何航路的 天体出发,访问这 N 颗行星每颗恰好一次,首先完成这一目标的人获得胜利。 由于赛制非常开放,很多人驾驶着千奇百怪的自制赛车来参赛。这次悠悠驾 驶的赛车名为超能电驴,这是一部凝聚了全银河最尖端科技结晶的梦幻赛车。作 为最高科技的产物,超能电驴有两种移动模式:高速航行模式和能力爆发模式。 在高速航行模式下,超能电驴会展开反物质引擎,以数倍于光速的速度沿星际航 路高速航行。在能力爆发模式下,超能电驴脱离时空的束缚,使用超能力进行空 间跳跃——在经过一段时间的定位之后,它能瞬间移动到任意一个行星。 天不遂人愿,在比赛的前一天,超能电驴在一场离子风暴中不幸受损,机能 出现了一些障碍:在使用高速航行模式的时候,只能由每个星球飞往引力比它大 的星球,否则赛车就会发生爆炸。 尽管心爱的赛车出了问题,但是悠悠仍然坚信自己可以取得胜利。他找到了 全银河最聪明的贤者——你,请你为他安排一条比赛的方案,使得他能够用最少 的时间完成比赛。

Input

第一行是两个正整数 N, M。 第二行 N 个数 A1~AN, 其中Ai表示使用能力爆发模式到达行星 i 所需的定位 时间。 接下来 M行,每行 3个正整数ui, vi, wi,表示在编号为 ui和vi的行星之间存 在一条需要航行wi时间的星际航路。 输入数据已经按引力值排序,也就是编号小的行星引力值一定小,且不会有 两颗行星引力值相同。

Output

仅包含一个正整数,表示完成比赛所需的最少时间。

Sample Input

3 3
1 100 100
2 1 10
1 3 1
2 3 1

Sample Output

12

HINT

说明:先使用能力爆发模式到行星 1,花费时间 1。 
然后切换到高速航行模式,航行到行星 2,花费时间10。 
之后继续航行到行星 3完成比赛,花费时间 1。 
虽然看起来从行星 1到行星3再到行星 2更优,但我们却不能那样做,因为
那会导致超能电驴爆炸。

对于 30%的数据 N≤20,M≤50; 
对于 70%的数据 N≤200,M≤4000; 
对于100%的数据N≤800, M≤15000。输入数据中的任何数都不会超过106
。 
输入数据保证任意两颗行星之间至多存在一条航道,且不会存在某颗行星到
自己的航道。

题意

题解:

比较裸的费用流啦,注意拆点

S-v-v‘-t

一开始跳跃的,就直接从S - V‘就好了,费用为跳跃时间,建边的,就让编号小的v指向编号大的v‘,cap为1 cost为这条路的长度就行了

然后跑一发费用流

代码:

//qscqesze
#include <cstdio>
#include <cmath>
#include <cstring>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <set>
#include <bitset>
#include <vector>
#include <sstream>
#include <queue>
#include <typeinfo>
#include <fstream>
#include <map>
#include <stack>
typedef long long ll;
using namespace std;
//freopen("D.in","r",stdin);
//freopen("D.out","w",stdout);
#define sspeed ios_base::sync_with_stdio(0);cin.tie(0)
#define maxn 200500
#define mod 1001
#define eps 1e-9
#define pi 3.1415926
int Num;
//const int inf=0x7fffffff;
const ll inf=999999999;
inline ll read()
{
    ll x=0,f=1;char ch=getchar();
    while(ch<‘0‘||ch>‘9‘){if(ch==‘-‘)f=-1;ch=getchar();}
    while(ch>=‘0‘&&ch<=‘9‘){x=x*10+ch-‘0‘;ch=getchar();}
    return x*f;
}
//*************************************************************************************
const int MAXN = 10000;
const int MAXM = 100000;
const int INF = 0x3f3f3f3f;
struct Edge
{
    int to, next, cap, flow, cost;
    int x, y;
} edge[MAXM],HH[MAXN],MM[MAXN];
int head[MAXN],tol;
int pre[MAXN],dis[MAXN];
bool vis[MAXN];
int N, M;
char map[MAXN][MAXN];
void init()
{
    N = MAXN;
    tol = 0;
    memset(head, -1, sizeof(head));
}
void addedge(int u, int v, int cap, int cost)//左端点,右端点,容量,花费
{
    edge[tol]. to = v;
    edge[tol]. cap = cap;
    edge[tol]. cost = cost;
    edge[tol]. flow = 0;
    edge[tol]. next = head[u];
    head[u] = tol++;
    edge[tol]. to = u;
    edge[tol]. cap = 0;
    edge[tol]. cost = -cost;
    edge[tol]. flow = 0;
    edge[tol]. next = head[v];
    head[v] = tol++;
}
bool spfa(int s, int t)
{
    queue<int>q;
    for(int i = 0; i < N; i++)
    {
        dis[i] = INF;
        vis[i] = false;
        pre[i] = -1;
    }
    dis[s] = 0;
    vis[s] = true;
    q.push(s);
    while(!q.empty())
    {
        int u = q.front();
        q.pop();
        vis[u] = false;
        for(int i = head[u]; i != -1; i = edge[i]. next)
        {
            int v = edge[i]. to;
            if(edge[i]. cap > edge[i]. flow &&
                    dis[v] > dis[u] + edge[i]. cost )
            {
                dis[v] = dis[u] + edge[i]. cost;
                pre[v] = i;
                if(!vis[v])
                {
                    vis[v] = true;
                    q.push(v);
                }
            }
        }
    }
    if(pre[t] == -1) return false;
    else return true;
}
//返回的是最大流, cost存的是最小费用
int minCostMaxflow(int s, int t, int &cost)
{
    int flow = 0;
    cost = 0;
    while(spfa(s,t))
    {
        int Min = INF;
        for(int i = pre[t]; i != -1; i = pre[edge[i^1]. to])
        {
            if(Min > edge[i]. cap - edge[i]. flow)
                Min = edge[i]. cap - edge[i]. flow;
        }
        for(int i = pre[t]; i != -1; i = pre[edge[i^1]. to])
        {
            edge[i]. flow += Min;
            edge[i^1]. flow -= Min;
            cost += edge[i]. cost * Min;
        }
        flow += Min;
    }
    return flow;
}int main()
{
    init();//注意
    int beg = 5002;//超级起点
    int end = 5000;//超级汇点
    int n=read(),m=read();
    for(int i=1;i<=n;i++)
    {
        int x=read();
        addedge(beg,i,1,0);
        addedge(beg,n+i,1,x);
        addedge(n+i,end,1,0);
    }
    for(int i=1;i<=m;i++)
    {
        int x=read(),y=read(),z=read();
        if(x>y)swap(x,y);
        addedge(x,n+y,1,z);
    }
    int ans = 0;
    minCostMaxflow(beg,end,ans);
    printf("%d\n",ans);
}
时间: 2024-10-27 07:05:36

BZOJ 1927: [Sdoi2010]星际竞速 费用流的相关文章

bzoj 1927 [Sdoi2010]星际竞速(最小费用最大流)

1927: [Sdoi2010]星际竞速 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 1576  Solved: 954[Submit][Status][Discuss] Description 10 年一度的银河系赛车大赛又要开始了.作为全银河最盛大的活动之一, 夺得这个项目的冠军无疑是很多人的梦想,来自杰森座 α星的悠悠也是其中之一. 赛车大赛的赛场由 N 颗行星和M条双向星际航路构成,其中每颗行星都有 一个不同的引力值.大赛要求车手们从一

BZOJ 1927: [Sdoi2010]星际竞速(最小费用最大流)

拆点,费用流... ----------------------------------------------------------------------------- #include<cstdio> #include<cstring> #include<algorithm> #include<iostream> #include<queue> #define rep( i, n ) for( int i = 0; i < n; +

bzoj 1927: [Sdoi2010]星际竞速

1 #include<cstdio> 2 #include<iostream> 3 #define M 1605 4 #define S 3000005 5 using namespace std; 6 int q[S],f[M],n,m,ans,a[M],head[M],next[S],u[S],v[S],c[S],fr[S],cnt=1,d[M],fro[M],T; 7 void jia(int a1,int a2,int a3,int a4) 8 { 9 cnt++; 10

bzoj 1927 [Sdoi2010]星际竞速【最小费用最大流】

果然还是不会建图- 设\( i \)到\( j \)有通路,代价为\( w[i][j] \),瞬移到i代价为\( a[i] \),瞬移到i代价为\( a[j] \),逗号前是流量. 因为每个点只能经过一次,所以流量限制为1,注意到从s开始很难保证出发点不同,所以但是又有联通条件,所以考虑每个扩展过的点(实际不用考虑反正早晚要扩展到)只向外扩展一个点,也就是每次只选两个联通的点(包括瞬移可达) 拆点的作用是加上费用,\( s \)到所有\( i \)连流量1费用0的边,所有\(i \)向t连流量1

1927: [Sdoi2010]星际竞速

1927: [Sdoi2010]星际竞速 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 2040  Solved: 1257[Submit][Status][Discuss] Description 10年一度的银河系赛车大赛又要开始了.作为全银河最盛大的活动之一,夺得这个项目的冠军无疑是很多人的梦想,来自杰森座α星的悠悠也是其中之一.赛车大赛的赛场由N颗行星和M条双向星际航路构成,其中每颗行星都有一个不同的引力值.大赛要求车手们从一颗与这N颗行

BZOJ 1927 SDOI 2010 星际竞速 费用流

题目大意:宇宙空间中进行了一次竞速大赛.有两种飞行方式,第一种是通过正常的道路,但是只能从标号小的飞到标号大的地方:第二种是直接过去,但是需要花费固定的时间.问正好遍历一次所有的点最少需要的多少时间. 思路:费用流.把每个点拆点,S到每个点的起点连费用0的边,向每个终点连费用为固定费用的边,图中原有的边从一个的起点连到另一个点的终点.然后每个点的终点向T连边.跑最小费用最大流就是最后的答案. CODE: #include <queue> #include <cstdio> #inc

BZOJ 1927 星际竞速(费用流)

考虑费用流,题目要求走n个点都走完且恰好一次,显然流量的限制为n. 建立源点s和汇点t,并把每个星球拆成两个点i和i',分别表示已到达该点和经过该点. 对于能力爆发,建边(s,i',1,w). 对应高速航行,建边(s,i,1,0), (i,j',1,w). 因为每个点必须走一次且只能走一次.建边(i',t,1,0). 其实就是类似最小路径覆盖的建图方法. # include <cstdio> # include <cstring> # include <cstdlib>

【BZOJ】1927: [Sdoi2010]星际竞速(二分图+费用流)

http://www.lydsy.com/JudgeOnline/problem.php?id=1927 好神的题!!!!!!!!!!!!!!!!!!! 拆点后变成二分图,其实我们要求的就是类似路径覆盖这样的东西!! 只不过是加了权的.. 建图: 源向i+n连容量1,费用为能力爆发的费用 源向i连容量1,费用为0 i+n向汇连容量1,费用0 如果有边x<y,连x到y+n容量为1,费用为时间 然后跑最小费用最大流 为什么这样就行了呢? 首先,最大流一定是一个对n个点的路径覆盖(即覆盖掉所有的附加点

BZOJ:1927: [Sdoi2010]星际竞速

题解:最小费用流+二分图模型: 左边表示出这个点,右边表示入这个点: #include<iostream> #include<cstdio> #include<cstring> #include<queue> #include<vector> using namespace std; const int maxn=10009; const int inf=1000000000; int n,m; int a[maxn]; struct Edge{