AD采集滤波算法

收集的关于基础滤波算法:

理论上讲单片机从A/D芯片上采集的信号就是需要的量化信号,但是由于存在电路的相互干扰、电源噪声干扰和电磁干扰,在A/D芯片的模拟输入信号上会叠加周期或者非周期的干扰信号,并会被附加到量化值中,给信号带来一定的恶化。考虑到数据采集的实时性和安全性,有时需要对采集的数据进行软处理,一尽量减小干扰信号的影响,这一过程称为数据采集滤波。

以下介绍十种数据采集滤波的方法和编程实例。这10种方法针对不同的噪声和采样信号具有不同的性能,为不同场合的应用提供了较广的选择空间。选择这些方法时,必须了解电路种存在的主要噪声类型,主要包括一下方面:

* 噪声是突发随机噪声还是周期性噪声

* 噪声频率的高低

* 采样信号的类型是块变信号还是慢变信号

* 另外还要考虑系统可供使用的资源等

通过对噪声和采样性能分析,选用最合适的方法以及确定合理的参数,才能达到良好的效果。

目前用于数据采集滤波的主要方法有以下10种,这10种方法都是在时域上进行处理的,相对于从频域角度设计的IIR或者FIR滤波器,其实现简单,运算量小,而性能可以满足绝大部分的场合的应用要求

1、限幅滤波法(又称程序判断滤波法)
    A、方法:
        根据经验判断,确定两次采样允许的最大偏差值(设为A)
        每次检测到新值时判断:
        如果本次值与上次值之差<=A,则本次值有效
        如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值
    B、优点:
        能有效克服因偶然因素引起的脉冲干扰
    C、缺点
        无法抑制那种周期性的干扰
        平滑度差
   
2、中位值滤波法
    A、方法:
        连续采样N次(N取奇数)
        把N次采样值按大小排列
        取中间值为本次有效值
    B、优点:
        能有效克服因偶然因素引起的波动干扰
        对温度、液位的变化缓慢的被测参数有良好的滤波效果
    C、缺点:
        对流量、速度等快速变化的参数不宜

3、算术平均滤波法
    A、方法:
        连续取N个采样值进行算术平均运算
        N值较大时:信号平滑度较高,但灵敏度较低
        N值较小时:信号平滑度较低,但灵敏度较高
        N值的选取:一般流量,N=12;压力:N=4
    B、优点:
        适用于对一般具有随机干扰的信号进行滤波
        这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动
    C、缺点:
        对于测量速度较慢或要求数据计算速度较快的实时控制不适用
        比较浪费RAM
       
4、递推平均滤波法(又称滑动平均滤波法)
    A、方法:
        把连续取N个采样值看成一个队列
        队列的长度固定为N
        每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则)
        把队列中的N个数据进行算术平均运算,就可获得新的滤波结果
        N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4
    B、优点:
        对周期性干扰有良好的抑制作用,平滑度高
        适用于高频振荡的系统   
    C、缺点:
        灵敏度低
        对偶然出现的脉冲性干扰的抑制作用较差
        不易消除由于脉冲干扰所引起的采样值偏差
        不适用于脉冲干扰比较严重的场合
        比较浪费RAM
       
5、中位值平均滤波法(又称防脉冲干扰平均滤波法)
    A、方法:
        相当于“中位值滤波法”+“算术平均滤波法”
        连续采样N个数据,去掉一个最大值和一个最小值
        然后计算N-2个数据的算术平均值
        N值的选取:3~14
    B、优点:
        融合了两种滤波法的优点
        对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差
    C、缺点:
        测量速度较慢,和算术平均滤波法一样
        比较浪费RAM

6、限幅平均滤波法
    A、方法:
        相当于“限幅滤波法”+“递推平均滤波法”
        每次采样到的新数据先进行限幅处理,
        再送入队列进行递推平均滤波处理
    B、优点:
        融合了两种滤波法的优点
        对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差
    C、缺点:
        比较浪费RAM

7、一阶滞后滤波法
    A、方法:
        取a=0~1
        本次滤波结果=(1-a)*本次采样值+a*上次滤波结果
    B、优点:
        对周期性干扰具有良好的抑制作用
        适用于波动频率较高的场合
    C、缺点:
        相位滞后,灵敏度低
        滞后程度取决于a值大小
        不能消除滤波频率高于采样频率的1/2的干扰信号
       
8、加权递推平均滤波法
    A、方法:
        是对递推平均滤波法的改进,即不同时刻的数据加以不同的权
        通常是,越接近现时刻的数据,权取得越大。
        给予新采样值的权系数越大,则灵敏度越高,但信号平滑度越低
    B、优点:
        适用于有较大纯滞后时间常数的对象
        和采样周期较短的系统
    C、缺点:
        对于纯滞后时间常数较小,采样周期较长,变化缓慢的信号
        不能迅速反应系统当前所受干扰的严重程度,滤波效果差

9、消抖滤波法
    A、方法:
        设置一个滤波计数器
        将每次采样值与当前有效值比较:
        如果采样值=当前有效值,则计数器清零
        如果采样值<>当前有效值,则计数器+1,并判断计数器是否>=上限N(溢出)
            如果计数器溢出,则将本次值替换当前有效值,并清计数器
    B、优点:
        对于变化缓慢的被测参数有较好的滤波效果,
        可避免在临界值附近控制器的反复开/关跳动或显示器上数值抖动
    C、缺点:
        对于快速变化的参数不宜
        如果在计数器溢出的那一次采样到的值恰好是干扰值,则会将干扰值当作有效值导入系

10、限幅消抖滤波法
    A、方法:
        相当于“限幅滤波法”+“消抖滤波法”
        先限幅,后消抖
    B、优点:
        继承了“限幅”和“消抖”的优点
        改进了“消抖滤波法”中的某些缺陷,避免将干扰值导入系统
    C、缺点:
        对于快速变化的参数不宜

假定从8位AD中读取数据(如果是更高位的AD可定义数据类型为int),子程序为get_ad();

1、限副滤波

#define A 10

char value;

char filter()
{
   char  new_value;
   new_value = get_ad();
   if ( ( new_value - value > A ) || ( value - new_value > A )
      return value;
   return new_value;
        
}

2、中位值滤波法

#define N  11

char filter()
{
   char value_buf[N];
   char count,i,j,temp;
   for ( count=0;count<N;count++)
   {
      value_buf[count] = get_ad();
      delay();
   }
   for (j=0;j<N-1;j++)
   {
      for (i=0;i<N-j;i++)
      {
         if ( value_buf[i]>value_buf[i+1] )
         {
            temp = value_buf[i];
            value_buf[i] = value_buf[i+1];
             value_buf[i+1] = temp;
         }
      }
   }
   return value_buf[(N-1)/2];
}

3、算术平均滤波法

#define N 12

char filter()
{
   int  sum = 0;
   for ( count=0;count<N;count++)
   {
      sum + = get_ad();
      delay();
   }
   return (char)(sum/N);
}

4、递推平均滤波法(又称滑动平均滤波法)

#define N 12

char value_buf[N];
char i=0;

char filter()
{
   char count;
   int  sum=0;
   value_buf[i++] = get_ad();
   if ( i == N )   i = 0;
   for ( count=0;count<N,count++)
      sum = value_buf[count];
   return (char)(sum/N);
}

5、中位值平均滤波法(又称防脉冲干扰平均滤波法)

#define N 12

char filter()
{
   char count,i,j;
   char value_buf[N];
   int  sum=0;
   for  (count=0;count<N;count++)
   {
      value_buf[count] = get_ad();
      delay();
   }
   for (j=0;j<N-1;j++)
   {
      for (i=0;i<N-j;i++)
      {
         if ( value_buf[i]>value_buf[i+1] )
         {
            temp = value_buf[i];
            value_buf[i] = value_buf[i+1];
             value_buf[i+1] = temp;
         }
      }
   }
   for(count=1;count<N-1;count++)
      sum += value[count];
   return (char)(sum/(N-2));
}

6、限幅平均滤波法
 
略 参考子程序1、3

7、一阶滞后滤波法

#define a 50

char value;

char filter()
{
   char  new_value;
   new_value = get_ad();
   return (100-a)*value + a*new_value;
}

8、加权递推平均滤波法

#define N 12

char code coe[N] = {1,2,3,4,5,6,7,8,9,10,11,12};
char code sum_coe = 1+2+3+4+5+6+7+8+9+10+11+12;

char filter()
{
   char count;
   char value_buf[N];
   int  sum=0;
   for (count=0,count<N;count++)
   {
      value_buf[count] = get_ad();
      delay();
   }
   for (count=0,count<N;count++)
      sum += value_buf[count]*coe[count];
   return (char)(sum/sum_coe);
}

9、消抖滤波法

#define N 12

char filter()
{
   char count=0;
   char new_value;
   new_value = get_ad();
   while (value !=new_value);
   {
      count++;
      if (count>=N)   return new_value;
       delay();
      new_value = get_ad();
   }
   return value;   
}

时间: 2024-10-14 00:50:17

AD采集滤波算法的相关文章

滑动平均滤波算法(递推平均滤波法)

//滑动平均滤波算法(递推平均滤波法) //ADNum为获得的AD数 //GN为数组value_buf[]的元素个数.该函数主要被调用,利用参数的数组传值 const int GN = 12; int filterPtr = 0; bool isFirst = true; public float gSum = 0; float[] gbuf  = new float[GN]; float GlideFilterAD(float ADNum) { if (isFirst) { isFirst =

8通道250MHz采样率14位AD采集FMC子卡AD采集卡

FMC124是北京青翼科技一款8通道250MHz采样率14位AD采集FMC子卡模块,该板卡符合VITA57规范,可以作为一个理想的IO模块耦合至FPGA前端,8通道AD通过高带宽的FMC连接器(HPC)连接至FPGA从而大大降低了系统信号延迟. 该板卡支持板上可编程采样时钟和外部参考时钟以及采样时钟,多片板卡还可以通过触发(输入/输出)信号进行同步采集,该板卡8路模拟信号通过50Ω特征阻抗的SSMB射频连接器输入,通过巴伦变压器耦合至ADC前端.板卡可广泛应用于通信多载波.雷达与智能天线.测试与

各种滤波算法的介绍及其实现

1.限幅滤波法(又称程序判断滤波法) A.方法:   根据经验判断,确定两次采样允许的最大偏差值(设为A)   每次检测到新值时判断:   如果本次值与上次值之差<=A,则本次值有效   如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值B.优点:   能有效克服因偶然因素引起的脉冲干扰C.缺点   无法抑制那种周期性的干扰   平滑度差 2.中位值滤波法A.方法:   连续采样N次(N取奇数)   把N次采样值按大小排列   取中间值为本次有效值B.优点:   能有效克

目标跟踪之粒子滤波---Opencv实现粒子滤波算法

目标跟踪学习笔记_2(particle filter初探1) 目标跟踪学习笔记_3(particle filter初探2) 前面2篇博客已经提到当粒子数增加时会内存报错,后面又仔细查了下程序,是代码方面的问题.所以本次的代码与前几次改变比较小.当然这些code基本也是参考网上的.代码写得很不规范,时间不够,等以后有机会将其优化并整理成类的形式.)              Opencv实现粒子滤波算法            摘要 本文通过opencv实现了一种目标跟踪算法——粒子滤波算法,算法的

【转】十一种滤波算法

1.限幅滤波法(又称程序判断滤波法)A.方法:   根据经验判断,确定两次采样允许的最大偏差值(设为A)   每次检测到新值时判断:   如果本次值与上次值之差<=A,则本次值有效   如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值B.优点:   能有效克服因偶然因素引起的脉冲干扰C.缺点   无法抑制那种周期性的干扰   平滑度差 2.中位值滤波法A.方法:   连续采样N次(N取奇数)   把N次采样值按大小排列   取中间值为本次有效值B.优点:   能有效克服

滑动平均滤波算法(递推平均滤波法)(转帖)

//滑动平均滤波算法(递推平均滤波法)--C语言版 int FilterI=0; //ADNum为获得的AD数 //n为数组value_buf[]的元素个数.该函数主要被调用,利用参数的数组传值 int GlideFilterAD(int value_buf[],int n,int ADNum) { int sum=0; value_buf[FilterI++]=ADNum; if(FilterI==n) FilterI=0; //先进先出,再求平均值 for(int count=0;count

MSP430之ADC采集滤波

占位符 1 /* 加权平均滤波 */ 2 static unsigned char coe[13] = {1,2,3,4,5,6,7,8,9,10,11,12,13}; 3 static unsigned int coeSum= 1+2+3+4+5+6+7+8+9+10+11+12+13; 4 unsigned long temp = 0; 5 6 for (i = 0; i<ADCN; i++) 7 { 8 temp += arr[i]*coe[i]; 9 } 10 temp = (unsig

经典滤波算法总结

第1种方法限幅滤波法(又称程序判断滤波法) A方法 根据经验判断,确定两次采样允许的最大偏差值(设为A) 每次检测到新值时判断: 如果本次值与上次值之差<=A,则本次值有效 如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值 B优点 能有效克服因偶然因素引起的脉冲干扰 C缺点 无法抑制那种周期性的干扰 平滑度差 /* A 值可根据实际情况调整 value 为有效值,new_value 为当前采样值 滤波程序返回有效的实际值 */ #define A 10 char val

基于Vivado HLS在zedboard中的Sobel滤波算法实现

 基于Vivado HLS在zedboard中的Sobel滤波算法实现 平台:zedboard  + Webcam 工具:g++4.6  + VIVADO HLS  + XILINX EDK + XILINX SDK 系统:ubuntu12.04 总体设计思路 sobel 算法理论基础       索贝尔算子(Sobel operator)主要用作边缘检测,在技术上,它是一离散性差分算子,用来运算图像亮度函数的灰度之近似值.在图像的任何一点使用此算子,将会产生对应的灰度矢量或是其法矢量. 该