bzoj 1188 [HNOI2007]分裂游戏(SG函数,博弈)

1188: [HNOI2007]分裂游戏

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 733  Solved: 451
[Submit][Status][Discuss]

Description


聪和睿睿最近迷上了一款叫做分裂的游戏。 该游戏的规则试: 共有 n 个瓶子, 标号为 0,1,2.....n-1, 第 i 个瓶子中装有
p[i]颗巧克力豆,两个人轮流取豆子,每一轮每人选择 3 个瓶子。标号为 i,j,k, 并要保证 i < j , j < = k
且第 i 个瓶子中至少要有 1 颗巧克力豆,随后这个人从第 i 个瓶子中拿走一颗豆 子并在 j,k 中各放入一粒豆子(j 可能等于 k)
。如果轮到某人而他无法按规则取豆子,那么他将输 掉比赛。胜利者可以拿走所有的巧克力豆!
两人最后决定由聪聪先取豆子,为了能够得到最终的巧克力豆,聪聪自然希望赢得比赛。他思考
了一下,发现在有的情况下,先拿的人一定有办法取胜,但是他不知道对于其他情况是否有必胜
策略,更不知道第一步该如何取。他决定偷偷请教聪明的你,希望你能告诉他,在给定每个瓶子
中的最初豆子数后是否能让自己得到所有巧克力豆,他还希望你告诉他第一步该如何取,并且为 了必胜,第一步有多少种取法? 假定 1 < n
< = 21,p[i] < = 10000

Input

输入文件第一行是一个整数t表示测试数据的组数,接下来为t组测试数据(t<=10)。每组测试数据的第一行是瓶子的个数n,接下来的一行有n个由空格隔开的非负整数,表示每个瓶子中的豆子数。

Output


于每组测试数据,输出包括两行,第一行为用一个空格两两隔开的三个整数,表示要想赢得游戏,第一步应该选取的3个瓶子的编号i,j,k,如果有多组符合要
求的解,那么输出字典序最小的一组。如果无论如何都无法赢得游戏,那么输出用一个空格两两隔开的三个-1。第二行表示要想确保赢得比赛,第一步有多少种不
同的取法。

Sample Input

2
4
1 0 1 5000
3
0 0 1

Sample Output

0 2 3
1
-1 -1 -1
0

HINT

Source

【思路】

SG函数,博弈

构造sg函数,以棋子所在位置为状态,其后继为j,k位置。枚举ijk,根据操作后sg函数值累计tot。

真神奇 < _ <

【代码】

 1 #include<cstdio>
 2 #include<cstring>
 3 using namespace std;
 4
 5 const int N = 30;
 6
 7 int n,a[N],sg[N],ans,tot;
 8
 9 int dfs(int x) {
10     if(sg[x]!=-1) return sg[x];
11     if(x==n) return sg[x]=0;
12     bool vis[10001];
13     memset(vis,0,sizeof(vis));
14     for(int i=x+1;i<=n;i++)
15         for(int j=i;j<=n;j++)
16             vis[dfs(i)^dfs(j)]=1;
17     for(int i=0;;i++)
18         if(!vis[i]) return sg[x]=i;
19 }
20
21 int main() {
22     int T;
23     scanf("%d",&T);
24     while(T--) {
25         memset(sg,-1,sizeof(sg));
26         ans=tot=0;
27         scanf("%d",&n);
28         for(int i=1;i<=n;i++)
29             scanf("%d",&a[i]);
30         for(int i=1;i<=n;i++)
31             if(a[i]&1) ans^=dfs(i);
32         for(int i=1;i<=n;i++)
33             for(int j=i+1;j<=n;j++)
34                 for(int k=j;k<=n;k++) {
35                     if((ans^dfs(i)^dfs(j)^dfs(k))) continue;
36                     ++tot;
37                     if(tot==1) printf("%d %d %d\n",i-1,j-1,k-1);
38                 }
39         if(!tot) printf("-1 -1 -1\n");
40         printf("%d\n",tot);
41     }
42     return 0;
43 }
时间: 2024-10-10 00:05:08

bzoj 1188 [HNOI2007]分裂游戏(SG函数,博弈)的相关文章

bzoj 1188 : [HNOI2007]分裂游戏 sg函数

题目链接 给n个位置, 每个位置有一个小球. 现在两个人进行操作, 每次操作可以选择一个位置i, 拿走一个小球.然后在位置j, k(i<j<=k)处放置一个小球. 问你先进行什么操作会先手必胜以及方法数量. 感觉这题好神 如果一个位置有偶数个小球, 那么等价于这个位置没有小球. 因为第二个人可以进行和第一个人相同的操作. 所以初始值%2. 然后我们把每个位置看成一个状态, 如果i有一个小球, 等价于j, k 也有一个小球. 然后转移. 方法数量就n^3枚举就可以了. #include <

[BZOJ 1188] [HNOI2007] 分裂游戏 【博弈论|SG函数】

题目链接:BZOJ - 1188 题目分析 我们把每一颗石子看做一个单个的游戏,它的 SG 值取决于它的位置. 对于一颗在 i 位置的石子,根据游戏规则,它的后继状态就是枚举符合条件的 j, k.然后后继状态就是 j 与 k 这两个游戏的和. 游戏的和的 SG 值就是几个单一游戏的 SG 值的异或和. 那么还是根据 SG 函数的定义 , 即 SG(u) = mex(SG(v)) ,预处理求出每个位置的 SG 值.一个位置的 SG 值与它后面的位置有关,是取决于它是倒数第几个位置,那么我们预处理求

BZOJ 1188: [HNOI2007]分裂游戏(multi-nim)

Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1386  Solved: 840[Submit][Status][Discuss] Description 聪聪和睿睿最近迷上了一款叫做分裂的游戏.该游戏的规则试:共有n个瓶子,标号为0,1,2.....n-1,第i个瓶子中 装有p[i]颗巧克力豆,两个人轮流取豆子,每一轮每人选择3个瓶子.标号为i,j,k,并要保证i<j,j<=k且第i个瓶子 中至少要有1颗巧克力豆,随后这个人从第i个瓶子中拿走

BZOJ P1188 HNOI2007 分裂游戏——solution

题目描述: (<--这个) 组合游戏,——把每个石头看做一个游戏, Multi_game——消去i上的石子后,,k上的游戏又多了一个: 于是就套用multi_game的模型即可 求解SG函数时,发现一个游戏的后继是谁只与其位置有关,于是可以用一个SG值代替一堆游戏的SG值: 求解完所有SG值,后异或即可: 代码: 1 #include<cstdio> 2 #include<cstring> 3 using namespace std; 4 int a[25],n,sg[25]

组合游戏 - SG函数和SG定理

在介绍SG函数和SG定理之前我们先介绍介绍必胜点与必败点吧. 必胜点和必败点的概念: P点:必败点,换而言之,就是谁处于此位置,则在双方操作正确的情况下必败. N点:必胜点,处于此情况下,双方操作均正确的情况下必胜. 必胜点和必败点的性质: 1.所有终结点是 必败点 P .(我们以此为基本前提进行推理,换句话说,我们以此为假设) 2.从任何必胜点N 操作,至少有一种方式可以进入必败点 P. 3.无论如何操作,必败点P 都只能进入 必胜点 N. 我们研究必胜点和必败点的目的时间为题进行简化,有助于

BZOJ 1874: [BeiJing2009 WinterCamp]取石子游戏 [Nim游戏 SG函数]

小H和小Z正在玩一个取石子游戏. 取石子游戏的规则是这样的,每个人每次可以从一堆石子中取出若干个石子,每次取石子的个数有限制,谁不能取石子时就会输掉游戏. 小H先进行操作,他想问你他是否有必胜策略,如果有,第一步如何取石子. N≤10 Ai≤1000 裸SG函数啊 然而我连SG函数都不会求了,WA了一会儿之后照别人代码改发现vis公用了... #include <iostream> #include <cstdio> #include <cstring> #includ

BZOJ 1874: [BeiJing2009 WinterCamp]取石子游戏(SG函数)

Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 871  Solved: 365[Submit][Status][Discuss] Description 小H和小Z正在玩一个取石子游戏. 取石子游戏的规则是这样的,每个人每次可以从一堆石子中取出若干个石子, 每次取石子的个数有限制,谁不能取石子时就会输掉游戏. 小H先进行操作,他想问你他是否有必胜策略,如果有 ,第一步如何取石子. Input 输入文件的第一行为石子的堆数N 接下来N行,每行一个数A

Bzoj1188 [HNOI2007]分裂游戏

Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1110  Solved: 679 Description 聪聪和睿睿最近迷上了一款叫做分裂的游戏. 该游戏的规则试: 共有 n 个瓶子, 标号为 0,1,2.....n-1, 第 i 个瓶子中装有 p[i]颗巧克力豆,两个人轮流取豆子,每一轮每人选择 3 个瓶子.标号为 i,j,k, 并要保证 i < j , j < = k 且第 i 个瓶子中至少要有 1 颗巧克力豆,随后这个人从第 i 个瓶子中

【POJ2960】S-Nim SG函数 博弈 裸题模板题

转载请注明出处:http://blog.csdn.net/vmurder/article/details/42653601 其实我就是觉得原创的访问量比未授权盗版多有点不爽233... 题意: 两人轮流从若干堆石子中某堆取k个石子, k∈集合S, 就是每次取的数量被限定成某几个数的意思! 然后跟正常Nim一样谁不能操作就输. 题解: SG函数裸题. SG函数: 首先需要是有向无环图(拓扑图) 首先确定边界状态,SG值为0,然后暴力拓扑得出其它点的SG值. SG值为所有子集的SG值中未出现的最小自