Steinhaus-Johnson-Trotter 生成全排列算法

Steinhaus-Johnson-Trotter算法是一种基于最小变换的全排列生成算法,对于排列a[1...n],该算法通过将a[i],与a[i-1](或a[i+1])进行交换,生成下一个排列,直到所有排列生成完毕为止,这样,当前排列与其后继排列只是两个相邻位置的元素发生了调换。当然,为了防止重复生成某一个排列,算法并非随意调换某两个元素之间的位置,其生成全排列的具体规则如下。

  • 首先,以字典序最小的排列起始,并且为该排列的每个元素赋予一个移动方向,初始所有元素的移动方向都向左。
  • 在排列中查找这样的元素,该元素按照其对应的移动方向移动,可以移动到一个合法位置,且移动方向的元素小于该元素,在所有满足条件的元素中,找到其中的最大者。
  • 将该元素与其移动方向所对应的元素交换位置。
  • 对于排列中,所有元素值大于该元素的元素,反转其移动方向。

这里有几个概念需要说明一下,所谓合法位置,是指该元素按照其移动方向移动,不会移动到排列数组之外,例如对于<4,<1,<2,<3,此时对于元素4,如果继续向左移动,就会超过数组范围,所以4的下一个移动位置是非法位置。而且,所有元素,都只能向比自己小的元素的方向移动,如上面例子中的元素2,3,而元素1是不能够移动到元素4的位置的。每次移动,都要对可以移动的所有元素中的最大者进行操作,上例中元素1,4不能移动,2,3都存在合法的移动方案,此时需要移动3,而不能移动2。合法移动之后,需要将所有大于移动元素的元素的移动方向反转,上例中的元素3移动后的结果是4>,1<,<3,<2,可以看到,元素4的移动方向改变了。再如此例子<2,<1,3>,4>,对于其中的元素2,4,其对应的下一个移动位置都是非法位置,而对于元素1,3,其下一个移动位置的元素,都比他们要大,对于该排列就找不到一个可以的移动方案,这说明该算法已经达到终态,全排列生成结束。下面是该算法的代码

inline int SJTNext(unsigned int* index, size_t array_size, int* move)
{
	unsigned int i, j, t;

	//找到最大合法移动的元素索引
	for(i = array_size - 1, j = array_size; i != UINT_MAX; --i)
	{
		if(i + move[i] < array_size && index[i] > index[i + move[i]])
		{
			if(j == array_size)
			{
				j = i;
				continue;
			}

			if(index[i] > index[j])
			{
				j = i;
			}
		}
	}

	//未发现合法的移动策略
	if(j == array_size)
	{
		return 1;
	}

	t = index[j];//要交换位置的元素
	i = j + move[j];//发生交换的位置
	swap(index, i, j);
	swap(move, i, j);

	//将所有比t大的元素的移动方向反转
	for(i = 0; i < array_size; ++i)
	{
		if(index[i] > t)
		{
			move[i] = -move[i];
		}
	}

	return 0;
}

/*
 * 基于最小变换的Steinhaus–Johnson–Trotter算法
 */
void FullArray(char* array, size_t array_size)
{
	unsigned int index[array_size];
	int move[array_size];

	for(unsigned int i = 0; i < array_size; ++i)
	{
		index[i] = i;
		move[i] = -1;
	}

	ArrayPrint(array, array_size, index);

	while(!SJTNext(index, array_size, move))
	{
		ArrayPrint(array, array_size, index);
	}
}

代码使用了一个伴随数组move标记对应位置元素的移动方向,在元素移动时,move数组中的对应元素也要相应移动。该算法从初始排列<1,<2,<3,<4开始,可以生成4元素的所有排列,直至最终排列<2,<1,3>,4>为止,其状态转移如下图所示:

未完待续....

时间: 2024-10-18 18:19:09

Steinhaus-Johnson-Trotter 生成全排列算法的相关文章

字典序法生成全排列算法的证明

引言 对一个给定数据进行全排列,在各种场合经常会用到.组合数学中,生成全排列的方法有很多,卢开澄老师的<组合数学>中就介绍了三种:序数法,字典序法,临位互换法等.其中以字典序法由于算法简单,并且使用的时候可以依照当前状态获取下一个状态,直到所有排列全部完成,方便在程序中随要随用,应用比较广泛,STL中的Next_permutation也是使用此法. 算法定义 首先看什么叫字典序,顾名思义就是按照字典的顺序(a-z, 1-9).以字典序为基础,我们可以得出任意两个数字串的大小.比如 "

字典序法生成全排列算法图

算法定义 首先看什么叫字典序,顾名思义就是按照字典的顺序(a-z, 1-9).以字典序为基础,我们可以得出任意两个数字串的大小.比如 "1" < "12"<"13". 就是按每个数字位逐个比较的结果.对于一个数字串,"123456789", 可以知道最小的串是 从小到大的有序串"123456789",而最大的串是从大到小的有序串"*987654321".这样对于"1

【codeup】1959: 全排列 及全排列算法详解

题目描述 给定一个由不同的小写字母组成的字符串,输出这个字符串的所有全排列.我们假设对于小写字母有'a' < 'b' < ... < 'y' < 'z',而且给定的字符串中的字母已经按照从小到大的顺序排列. 输入 输入只有一行,是一个由不同的小写字母组成的字符串,已知字符串的长度在1到6之间. 输出 输出这个字符串的所有排列方式,每行一个排列.要求字母序比较小的排列在前面.字母序如下定义:已知S = s1s2...sk , T = t1t2...tk,则S < T 等价于,存

全排列算法(转)

列出全排列的初始思想: 解决一个算法问题,我比较习惯于从基本的想法做起,我们先回顾一下我们自己是如何写一组数的全排列的:1,3,5,9(为了方便,下面我都用数进行全排列而不是字符). 1,3,5,9.(第一个) 首先保持第一个不变,对3,5,9进行全排列. 同样地,我们先保持3不变,对5,9进行全排列. 保持5不变,对9对进行全排列,由于9只有一个,它的排列只有一种:9.接下来5不能以5打头了,5,9相互交换,得到 1,3,9,5. 此时5,9的情况都写完了,不能以3打头了,得到 1,5,3,9

两种常用的全排列算法(java)

问题:给出一个字符串,输出所有可能的排列. 全排列有多种算法,此处仅介绍常用的两种:字典序法和递归法. 1.字典序法: 如何计算字符串的下一个排列了?来考虑"926520"这个字符串,我们从后向前找第一双相邻的递增数字,"20"."52"都是非递增的,"26 "即满足要求,称前一个数字2为替换数,替换数的下标称为替换点,再从后面找一个比替换数大的最小数(这个数必然存在),0.2都不行,5可以,将5和2交换得到"956

全排列算法的递归与非递归实现

全排列算法的递归与非递归实现 全排列算法是常见的算法,用于求一个序列的全排列,本文使用C语言分别用递归与非递归两种方法实现,可以接受元素各不相同的输入序列. 题目来自leetcode: Given a collection of numbers, return all possible permutations. For example, [1,2,3] have the following permutations: [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3

算法设计:全排列算法代码实现

在上星期的算法设计课程的学习中,我们学习了两种全排列算法,该算法用于求出数组{1,2,3,...,n}的所有可能的排列,今天我们就来看看这个算法的具体代码实现. 1. 第一种算法 第一种算法和我们现实生活中习惯的方法较为相似,以{1,2,3}为例,我们先写出第一种排列123,然后将2与3交换,得到132:再回到123,交换1与2得到213,再将1与3交换.....直到得到所有的排列. 该算法伪码如下: PERMUTATIONS1(int n): for j←1 to n a[j]←j end f

全排列算法 --javascript 实现

(function(){ var ret = new Array(); var A = function a(str){ if(str == undefined || str == null){return new Array();} if(str.length < 2) {return new Array(str);} if(str.length == 2) {return new Array(str[0]+str[1],str[1]+str[0]);} for(var k = 0;k <

Stanford大学机器学习公开课(五):生成学习算法、高斯判别、朴素贝叶斯

(一)生成学习算法 在线性回归和Logistic回归这种类型的学习算法中我们探讨的模型都是p(y|x;θ),即给定x的情况探讨y的条件概率分布.如二分类问题,不管是感知器算法还是逻辑回归算法,都是在解空间中寻找一条直线从而把两种类别的样例分开,对于新的样例,只要判断在直线的哪一侧即可:这种直接对问题求解的方法可以称为判别学习方法. 而生成学习算法则是对两个类别分别进行建模,用新的样例去匹配两个模板,匹配度较高的作为新样例的类别,比如分辨大象(y=1)和狗(y=0),首先,观察大象,然后建立一个大