机器学习笔记—再谈广义线性模型

前文从线性回归和 Logistic 回归引出广义线性回归的概念,很多人还是很困惑,不知道为什么突然来个广义线性回归,有什么用?只要知道连续值预测就用线性回归、离散值预测就用 Logistic 回归不就行了?还有一些概念之间的关系也没理清,例如线性回归和高斯分布、Logistic 回归和伯努利分布、连接函数和响应函数。

这种困惑是可以理解的,前文为了引导快速入门,从实战解题的角度推出了答案,但对其背后的概率假设解释不足,虽然线性回归专门开辟一节来介绍高斯分布假设,但很多人误以为这一节的目的只是为了证明最小均方误差的合理性,Logistic 回归的伯努利分布假设也需做解释。

线性回归是建立在高斯分布的假设上,Logistic 回归是建立在伯努利分布的假设上。如果不能从概率的角度理解线性回归和 Logistic 回归,就不能升一级去理解广义线性回归,而广义线性模型就是要将其它的分布也包纳进来,提取这些分布模型的共同点,成为一个模型,这样再遇到其它分布,如多项式分布、泊松分布、伽马分布、指数分布、贝塔分布和 Dirichlet 分布等,就可以按部就班地套模型进行计算了。

参考资料:

1、http://cs229.stanford.edu/notes/cs229-notes1.pdf

时间: 2024-10-13 02:20:12

机器学习笔记—再谈广义线性模型的相关文章

斯坦福吴恩达教授机器学习公开课第四讲笔记——牛顿方法/广义线性模型

广义线性模型(logistic和softmax)

再谈广义线性模型之前,先来看一下普通线性模型: 普通线性模型的假设主要有以下几点: 1.响应变量Y和误差项?正态性:响应变量Y和误差项?服从正态分布,且?是一个白噪声过程,因而具有零均值,同方差的特性. 2.预测量xi和未知参数βi的非随机性:预测量xi具有非随机性.可测且不存在测量误差:未知参数βi认为是未知但不具随机性的常数,值得注意的是运用最小二乘法或极大似然法解出的未知参数的估计值β^i则具有正态性. 广义线性模型(generalized linear model)正是在普通线性模型的基

斯坦福CS229机器学习课程笔记二:GLM广义线性模型与Logistic回归

一直听闻Logistic Regression逻辑回归的大名,比如吴军博士在<数学之美>中提到,Google是利用逻辑回归预测搜索广告的点击率.因为自己一直对个性化广告感兴趣,于是疯狂google过逻辑回归的资料,但没有一个网页资料能很好地讲清到底逻辑回归是什么.幸好,在CS229第三节课介绍了逻辑回归,第四节课介绍了广义线性模型,综合起来总算让我对逻辑回归有了一定的理解.与课程的顺序相反,我认为应该先了解广义线性模型再来看逻辑回归,也许这也是为什么讲逻辑回归的网页资料总让人感觉云里雾里的原因

广义线性模型 - Andrew Ng机器学习公开课笔记1.6

转载请注明出处:http://www.cnblogs.com/BYRans/ 前面的文章已经介绍了一个回归和一个分类的例子.在逻辑回归模型中我们假设: 在分类问题中我们假设: 他们都是广义线性模型中的一个例子,在理解广义线性模型之前需要先理解指数分布族. 指数分布族(The Exponential Family) 如果一个分布可以用如下公式表达,那么这个分布就属于指数分布族: 公式中y是随机变量:h(x)称为基础度量值(base measure): η称为分布的自然参数(natural para

机器学习笔记—指数分布簇和广义线性模型

到目前为止,我们讲了回归和分类的例子,在回归例子中: 在分类例子中: 可以看出,μ 和 Φ 是作为 x 和 θ 的函数来定义的. 在本文会看到,这两个模型其实都只是一个广大模型家族的特例,广义线性模型.我们也将演示广义线性模型家族的其它模型如何推导,并如何应用到分类和回归问题中的. 参考资料: 1.http://cs229.stanford.edu/notes/cs229-notes1.pdf

机器学习 —— 基础整理(五):线性回归;二项Logistic回归;Softmax回归;广义线性模型

本文简单整理了以下内容: (一)线性回归 (二)二分类:二项Logistic回归 (三)多分类:Softmax回归 (四)广义线性模型 二项Logistic回归是我去年入门机器学习时学的第一个模型,我觉得这个模型很适合用来入门(但是必须注意这个模型有很多很多很多很多可以展开的地方).比较有意思的是那时候还不会矩阵微积分,推导梯度时还是把矩阵全都展开求的(牛顿法要用的二阶梯度也是)... 下面的文字中,"Logistic回归"都表示用于二分类的二项Logistic回归. 首先约定一下记号

Stanford大学机器学习公开课(四):牛顿法、指数分布族、广义线性模型

(一)牛顿法解最大似然估计 牛顿方法(Newton's Method)与梯度下降(Gradient Descent)方法的功能一样,都是对解空间进行搜索的方法.其基本思想如下: 对于一个函数f(x),如果我们要求函数值为0时的x,如图所示: 我们先随机选一个点,然后求出该点的切线,即导数,延长它使之与x轴相交,以相交时的x的值作为下一次迭代的值. 更新规则为: 那么如何将牛顿方法应用到机器学习问题求解中呢? 对于机器学习问题,我们优化的目标函数为极大似然估计L,当极大似然估计函数取得最大时,其导

C++ Primer 学习笔记_73_面向对象编程 --再谈文本查询示例

面向对象编程 --再谈文本查询示例 引言: 扩展第10.6节的文本查询应用程序,使我们的系统可以支持更复杂的查询. 为了说明问题,将用下面的简单小说来运行查询: Alice Emma has long flowing red hair. Her Daddy says when the wind blows through her hair, it looks almost alive, like a fiery bird in flight. A beautiful fiery bird, he

C++ Primer 学习笔记_74_面向对象编程 --再谈文本查询示例[续/习题]

面向对象编程 --再谈文本查询示例[续/习题] //P522 习题15.41 //1 in TextQuery.h #ifndef TEXTQUERY_H_INCLUDED #define TEXTQUERY_H_INCLUDED #include <iostream> #include <fstream> #include <sstream> #include <vector> #include <set> #include <map&g