AdaBoostRegressor

class sklearn.ensemble.AdaBoostRegressor(base_estimator=Nonen_estimators=50learning_rate=1.0loss=‘linear‘,random_state=None)[source]

An AdaBoost regressor.

An AdaBoost [1] regressor is a meta-estimator that begins by fitting a regressor on the original dataset and then fits additional copies of the regressor on the same dataset but where the weights of instances are adjusted according to the error of the current prediction. As such, subsequent regressors focus more on difficult cases.

This class implements the algorithm known as AdaBoost.R2 [2].

Read more in the User Guide.

Parameters:
base_estimator : object, optional (default=DecisionTreeRegressor)

The base estimator from which the boosted ensemble is built. Support for sample weighting is required.

n_estimators : integer, optional (default=50)

The maximum number of estimators at which boosting is terminated. In case of perfect fit, the learning procedure is stopped early.

learning_rate : float, optional (default=1.)

Learning rate shrinks the contribution of each regressor by learning_rate. There is a trade-off between learning_rate and n_estimators.

loss : {‘linear’, ‘square’, ‘exponential’}, optional (default=’linear’)

The loss function to use when updating the weights after each boosting iteration.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random.

Attributes:
estimators_ : list of classifiers

The collection of fitted sub-estimators.

estimator_weights_ : array of floats

Weights for each estimator in the boosted ensemble.

estimator_errors_ : array of floats

Regression error for each estimator in the boosted ensemble.

feature_importances_ : array of shape = [n_features]

The feature importances if supported by the base_estimator.

See also

AdaBoostClassifierGradientBoostingRegressorDecisionTreeRegressor

References

[R123] Y. Freund, R. Schapire, “A Decision-Theoretic Generalization of on-Line Learning and an Application to Boosting”, 1995.
[R124]
  1. Drucker, “Improving Regressors using Boosting Techniques”, 1997.

Methods

fit(X, y[, sample_weight]) Build a boosted regressor from the training set (X, y).
get_params([deep]) Get parameters for this estimator.
predict(X) Predict regression value for X.
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of this estimator.
staged_predict(X) Return staged predictions for X.
staged_score(X, y[, sample_weight]) Return staged scores for X, y.
__init__(base_estimator=Nonen_estimators=50learning_rate=1.0loss=‘linear‘,random_state=None)[source]
feature_importances_
Return the feature importances (the higher, the more important the
feature).
Returns: feature_importances_ : array, shape = [n_features]
fit(Xysample_weight=None)[source]

Build a boosted regressor from the training set (X, y).

Parameters:
X : {array-like, sparse matrix} of shape = [n_samples, n_features]

The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR.

y : array-like of shape = [n_samples]

The target values (real numbers).

sample_weight : array-like of shape = [n_samples], optional

Sample weights. If None, the sample weights are initialized to 1 / n_samples.

Returns:
self : object

Returns self.

get_params(deep=True)[source]

Get parameters for this estimator.

Parameters:
deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns:
params : mapping of string to any

Parameter names mapped to their values.

predict(X)[source]

Predict regression value for X.

The predicted regression value of an input sample is computed as the weighted median prediction of the classifiers in the ensemble.

Parameters:
X : {array-like, sparse matrix} of shape = [n_samples, n_features]

The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR.

Returns:
y : array of shape = [n_samples]

The predicted regression values.

score(Xysample_weight=None)[source]

Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) ** 2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is 1.0, lower values are worse.

Parameters:
X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns:
score : float

R^2 of self.predict(X) wrt. y.

set_params(**params)[source]

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Returns: self :
staged_predict(X)[source]

Return staged predictions for X.

The predicted regression value of an input sample is computed as the weighted median prediction of the classifiers in the ensemble.

This generator method yields the ensemble prediction after each iteration of boosting and therefore allows monitoring, such as to determine the prediction on a test set after each boost.

Parameters:
X : {array-like, sparse matrix} of shape = [n_samples, n_features]

The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR.

Returns:
y : generator of array, shape = [n_samples]

The predicted regression values.

staged_score(Xysample_weight=None)[source]

Return staged scores for X, y.

This generator method yields the ensemble score after each iteration of boosting and therefore allows monitoring, such as to determine the score on a test set after each boost.

Parameters:
X : {array-like, sparse matrix} of shape = [n_samples, n_features]

The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR.

y : array-like, shape = [n_samples]

Labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns:
z : float

A decision tree is boosted using the AdaBoost.R2 [1] algorithm on a 1D sinusoidal dataset with a small amount of Gaussian noise. 299 boosts (300 decision trees) is compared with a single decision tree regressor. As the number of boosts is increased the regressor can fit more detail.

[1]
  1. Drucker, “Improving Regressors using Boosting Techniques”, 1997.

print(__doc__)

# Author: Noel Dawe <[email protected]>
#
# License: BSD 3 clause

# importing necessary libraries
import numpy as np
import matplotlib.pyplot as plt
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import AdaBoostRegressor

# Create the dataset
rng = np.random.RandomState(1)
X = np.linspace(0, 6, 100)[:, np.newaxis]
y = np.sin(X).ravel() + np.sin(6 * X).ravel() + rng.normal(0, 0.1, X.shape[0])

# Fit regression model
regr_1 = DecisionTreeRegressor(max_depth=4)

regr_2 = AdaBoostRegressor(DecisionTreeRegressor(max_depth=4),
                          n_estimators=300, random_state=rng)

regr_1.fit(X, y)
regr_2.fit(X, y)

# Predict
y_1 = regr_1.predict(X)
y_2 = regr_2.predict(X)

# Plot the results
plt.figure()
plt.scatter(X, y, c="k", label="training samples")
plt.plot(X, y_1, c="g", label="n_estimators=1", linewidth=2)
plt.plot(X, y_2, c="r", label="n_estimators=300", linewidth=2)
plt.xlabel("data")
plt.ylabel("target")
plt.title("Boosted Decision Tree Regression")
plt.legend()
plt.show()

时间: 2024-08-01 22:37:14

AdaBoostRegressor的相关文章

Scikit-learn使用总结

在机器学习和数据挖掘的应用中,scikit-learn是一个功能强大的python包.在数据量不是过大的情况下,可以解决大部分问题.学习使用scikit-learn的过程中,我自己也在补充着机器学习和数据挖掘的知识.这里根据自己学习sklearn的经验,我做一个总结的笔记.另外,我也想把这篇笔记一直更新下去. 1 scikit-learn基础介绍 1.1 估计器(Estimator) 估计器,很多时候可以直接理解成分类器,主要包含两个函数: fit():训练算法,设置内部参数.接收训练集和类别两

scikit-learn Adaboost类库使用小结

在集成学习之Adaboost算法原理小结中,我们对Adaboost的算法原理做了一个总结.这里我们就从实用的角度对scikit-learn中Adaboost类库的使用做一个小结,重点对调参的注意事项做一个总结. 1. Adaboost类库概述 scikit-learn中Adaboost类库比较直接,就是AdaBoostClassifier和AdaBoostRegressor两个,从名字就可以看出AdaBoostClassifier用于分类,AdaBoostRegressor用于回归. AdaBo

scikit-learn:class and function reference(看看你到底掌握了多少。。)

http://scikit-learn.org/stable/modules/classes.html#module-sklearn.decomposition Reference This is the class and function reference of scikit-learn. Please refer to the full user guide for further details, as the class and function raw specifications

监督学习笔记

监督学习 概念:在有标记的样本(labels samples)上建立机器学习 1.数据的预处理 机器学习算法无法理解原始数据,所以需对原始数据进行预处理,常用预处理如下: 预处理主要使用了preprocessing包,所以需对该包进行导入: import numpy as np from sklearn import preprocessing data=np.array([ [3,-1.5,2,-5.4], [0,4,-0.3,2.1], [1,3.3,-1.9,-4.3] ]) 1.1均值移

Scikit-learn技巧(拓展)总结

Scikit-learn技巧(拓展)总结 本文转载自:http://www.jianshu.com/p/516f009c0875 最近看了<Python数据挖掘入门与实战>,网上有说翻译地不好的,但是说实话,我觉得这本书还是相当不错的.作者Robert Layton是sklearn的开发者之一,书中介绍了很多sklearn使用的技巧和拓展的方法.这里就书中关于sklearn的部分,还有自己学习sklearn的知识,我做一个总结的笔记. 1 scikit-learn基础介绍 1.1 估计器(Es

机器学习:wine 分类

数据来源:http://archive.ics.uci.edu/ml/datasets/Wine 参考文献:<机器学习Python实战>魏贞原 博文目的:复习 工具:Geany #导入类库 from pandas import read_csv                                    #读数据from pandas.plotting import scatter_matrix            #画散点图from pandas import set_optio

Python sklearn Adaboost

1. Adaboost类库概述 scikit-learn中Adaboost类库比较直接,就是AdaBoostClassifier和AdaBoostRegressor两个,从名字就可以看出AdaBoostClassifier用于分类,AdaBoostRegressor用于回归. AdaBoostClassifier使用了两种Adaboost分类算法的实现,SAMME和SAMME.R.而AdaBoostRegressor则使用了我们原理篇里讲到的Adaboost回归算法的实现,即Adaboost.R

集成学习实战——Boosting(GBDT,Adaboost,XGBoost)

集成学习实践部分也分成三块来讲解: sklearn官方文档:http://scikit-learn.org/stable/modules/ensemble.html#ensemble 1.GBDT 2.XGBoost 3.Adaboost 在sklearn中Adaboost库分成两个,分别是分类和回归AdaBoostClassifier和AdaBoostRegressor 对于集成学习我们参数部分也分成框架跟基学习器的参数两种 1.框架部分: AdaBoostClassifier:http://

Tree - AdaBoost with sklearn source code

In the previous post we addressed some issue of decision tree, including instability, lack of smoothness, sensitivity to data, and etc. One solution is Boosting Method. In simple words Boosting combines multiple weak learners to get a powerful predic