poj 1269 Intersecting Lines(判断两直线关系,并求交点坐标)

Intersecting Lines

Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 12421   Accepted: 5548

Description

We all know that a pair of distinct points on a plane defines a line and that a pair of lines on a plane will intersect in one of three ways: 1) no intersection because they are parallel, 2) intersect in a line because they are on top of one another (i.e. they are the same line), 3) intersect in a point. In this problem you will use your algebraic knowledge to create a program that determines how and where two lines intersect.
Your program will repeatedly read in four points that define two
lines in the x-y plane and determine how and where the lines intersect.
All numbers required by this problem will be reasonable, say between
-1000 and 1000.

Input

The
first line contains an integer N between 1 and 10 describing how many
pairs of lines are represented. The next N lines will each contain eight
integers. These integers represent the coordinates of four points on
the plane in the order x1y1x2y2x3y3x4y4. Thus each of these input lines
represents two lines on the plane: the line through (x1,y1) and (x2,y2)
and the line through (x3,y3) and (x4,y4). The point (x1,y1) is always
distinct from (x2,y2). Likewise with (x3,y3) and (x4,y4).

Output

There
should be N+2 lines of output. The first line of output should read
INTERSECTING LINES OUTPUT. There will then be one line of output for
each pair of planar lines represented by a line of input, describing how
the lines intersect: none, line, or point. If the intersection is a
point then your program should output the x and y coordinates of the
point, correct to two decimal places. The final line of output should
read "END OF OUTPUT".

Sample Input

5
0 0 4 4 0 4 4 0
5 0 7 6 1 0 2 3
5 0 7 6 3 -6 4 -3
2 0 2 27 1 5 18 5
0 3 4 0 1 2 2 5

Sample Output

INTERSECTING LINES OUTPUT
POINT 2.00 2.00
NONE
LINE
POINT 2.00 5.00
POINT 1.07 2.20
END OF OUTPUT

Source

Mid-Atlantic 1996

题意:给定 1 - 10组直线,判断每组直线的关系,若相交 输出交点坐标,保留两位小数;若平行,输出‘NONE’;若重合,输出‘LINE’;

输出格式详见标准输出。

 1 #include <iostream>
 2 #include <cstdio>
 3 #include <cmath>
 4 #include <cstdlib>
 5 #include <cstring>
 6 #include <math.h>
 7 #include <algorithm>
 8 #include <cctype>
 9 #include <string>
10 #include <map>
11 #include <set>
12 #define ll long long
13 using namespace std;
14 const double eps = 1e-8;
15 int sgn(double x)
16 {
17     if(fabs(x) < eps)return 0;
18     if(x < 0) return -1;
19     else return 1;
20 }
21 struct Point
22 {
23     double x,y;
24     Point(){}
25     Point(double _x,double _y)
26     {
27         x = _x;y = _y;
28     }
29     Point operator -(const Point &b)const
30     {
31         return Point(x - b.x,y - b.y);
32     }
33     double operator ^(const Point &b)const
34     {
35         return x*b.y - y*b.x;
36     }
37     double operator *(const Point &b)const
38     {
39         return x*b.x + y*b.y;
40     }
41 };
42
43 struct Line
44 {
45     Point s,e;
46     Line(){}
47     Line(Point _s,Point _e)
48     {
49         s = _s;e = _e;
50     }
51     pair<Point,int> operator &(const Line &b)const
52     {
53         Point res = s;
54         if(sgn((s-e)^(b.s-b.e)) == 0)
55         {
56             if(sgn((b.s-s)^(b.e-s)) == 0)
57                 return make_pair(res,0);//两直线重合
58             else return make_pair(res,1);//两直线平行
59         }
60         double t = ((s-b.s)^(b.s-b.e))/((s-e)^(b.s-b.e));
61         res.x += (e.x - s.x)*t;
62         res.y += (e.y - s.y)*t;
63         return make_pair(res,2);//有交点
64     }
65 };
66
67 int main(void)
68 {
69     int t;
70     double x1,x2,x3,x4,y1,y2,y3,y4;
71     scanf("%d",&t);
72     printf("INTERSECTING LINES OUTPUT\n");
73     while(t--)
74     {
75         scanf("%lf %lf %lf %lf %lf %lf %lf %lf",&x1,&y1,&x2,&y2,&x3,&y3,&x4,&y4);
76         Line l1 = Line(  Point(x1,y1) ,Point(x2,y2)  );
77         Line l2 = Line(  Point(x3,y3) ,Point(x4,y4)  );
78         pair<Point,int> ans = l1 & l2;
79         if(ans.second == 2) printf("POINT %.2f %.2f\n",ans.first.x,ans.first.y);
80         else if(ans.second == 0) printf("LINE\n");
81         else printf("NONE\n");
82     }
83     printf("END OF OUTPUT\n");
84
85     return 0;
86 }
时间: 2024-11-08 21:03:15

poj 1269 Intersecting Lines(判断两直线关系,并求交点坐标)的相关文章

POJ 1269 Intersecting Lines(判断直线相交)

题目地址:POJ 1269 直接套模板就可以了...实在不想自己写模板了...写的又臭又长....不过这题需要注意的是要先判断是否有直线垂直X轴的情况. 代码如下: #include <iostream> #include <cstdio> #include <string> #include <cstring> #include <stdlib.h> #include <math.h> #include <ctype.h>

POJ 1269 Intersecting Lines (判断直线位置关系)

题目链接:POJ 1269 Problem Description We all know that a pair of distinct points on a plane defines a line and that a pair of lines on a plane will intersect in one of three ways: 1) no intersection because they are parallel, 2) intersect in a line becau

POJ 1269 Intersecting Lines(线段相交,水题)

Intersecting Lines 大意:给你两条直线的坐标,判断两条直线是否共线.平行.相交,若相交,求出交点. 思路:线段相交判断.求交点的水题,没什么好说的. struct Point{ double x, y; } ; struct Line{ Point a, b; } A, B; double xmult(Point p1, Point p2, Point p) { return (p1.x-p.x)*(p2.y-p.y)-(p1.y-p.y)*(p2.x-p.x); } bool

poj 1269 Intersecting Lines(判相交交点与平行)

http://poj.org/problem?id=1269 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 10379   Accepted: 4651 Description We all know that a pair of distinct points on a plane defines a line and that a pair of lines on a plane will intersect in

判断两条直线的位置关系 POJ 1269 Intersecting Lines

两条直线可能有三种关系:1.共线     2.平行(不包括共线)    3.相交. 那给定两条直线怎么判断他们的位置关系呢.还是用到向量的叉积 例题:POJ 1269 题意:这道题是给定四个点p1, p2, p3, p4,直线L1,L2分别穿过前两个和后两个点.来判断直线L1和L2的关系 这三种关系一个一个来看: 1. 共线. 如果两条直线共线的话,那么另外一条直线上的点一定在这一条直线上.所以p3在p1p2上,所以用get_direction(p1, p2, p3)来判断p3相对于p1p2的关

POJ 1269 Intersecting Lines【判断直线相交】

题意:给两条直线,判断相交,重合或者平行 思路:判断重合可以用叉积,平行用斜率,其他情况即为相交. 求交点: 这里也用到叉积的原理.假设交点为p0(x0,y0).则有: (p1-p0)X(p2-p0)=0 (p3-p0)X(p2-p0)=0 展开后即是 (y1-y2)x0+(x2-x1)y0+x1y2-x2y1=0 (y3-y4)x0+(x4-x3)y0+x3y4-x4y3=0 将x0,y0作为变量求解二元一次方程组. 假设有二元一次方程组 a1x+b1y+c1=0; a2x+b2y+c2=0

POJ 1269 Intersecting Lines 直线相交判断

D - Intersecting Lines Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u Submit Status Practice POJ 1269 Appoint description:  System Crawler  (2016-05-08) Description We all know that a pair of distinct points on a plane d

POJ 1269 - Intersecting Lines - [平面几何模板题]

题目链接:http://poj.org/problem?id=1269 Time Limit: 1000MS Memory Limit: 10000K Description We all know that a pair of distinct points on a plane defines a line and that a pair of lines on a plane will intersect in one of three ways: 1) no intersection b

poj 1269 Intersecting Lines——叉积求直线交点坐标

题目:http://poj.org/problem?id=1269 相关知识: 叉积求面积:https://www.cnblogs.com/xiexinxinlove/p/3708147.html什么是叉积:https://blog.csdn.net/sunbobosun56801/article/details/78980467        其二维:https://blog.csdn.net/qq_38182397/article/details/80508303计算交点:    方法1:面