linux内核系列(一)内核数据结构之链表

  • 双向链表

传统链表与linu内核链表的区别图:

图一

图二

从上图中看出在传统链表中各种不同链表间没有通用性,因为各个数据域不同,而在linux内核中巧妙将链表结构内嵌到数据域结构中使得不同结构之间能连接起来;

  • 链表的常用操作

内核中链表实现文件路径:include/linux/list.h

链表结构定义

struct list_head {

    struct list_head *next, *prev;

};

获取结构入口地址(list_entry)

#define list_entry(ptr, type, member) \

    container_of(ptr, type, member)

说明:type为指定一种结构类型,member为该结构中一个成员,而ptr与member为相同的类型;

#define container_of(ptr, type, member) ({          \

    const typeof(((type *)0)->member)*__mptr = (ptr);    \

             (type *)((char *)__mptr - offsetof(type, member)); })

#define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)

解析说明:

1、typeof为获取变量的类型;

2、const typeof(((type *)0)->member)*__mptr = (ptr);

把0强制转换为type 类型的指针(这里的0可以用其它数字也行),然后获取type 类型中member成员的类型(这里设该类型为A),即const A *__mptr=(ptr);

3、#define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)

获取成员在结构中的偏移量,注意这里的((TYPE *)0)这里必须是0不可以是其它数字,因为这样定义的一个指针它的基址为0,那么((size_t) &((TYPE *)0)->MEMBER)该表达式实际就是获取类型TYPE中MEMBER成员的偏移量;

链表的遍历

#define list_for_each_entry(pos, head, member)                \

    for (pos = list_entry((head)->next, typeof(*pos), member);    \

         &pos->member != (head);     \

         pos = list_entry(pos->member.next, typeof(*pos), member))

初始化链表成员

#define LIST_HEAD_INIT(name) { &(name), &(name) }

#define LIST_HEAD(name) \

    struct list_head name = LIST_HEAD_INIT(name)

static inline void INIT_LIST_HEAD(struct list_head *list)

{

    list->next = list;

    list->prev = list;

}

说明:LIST_HEAD_INIT与LIST_HEAD 都是将链表的两个成员都指向自己,不过LIST_HEAD创建一个名为参数name的list_head结构对象;

增加链表节点

static inline void __list_add(struct list_head *new,

                  struct list_head *prev,

                  struct list_head *next)

{

    next->prev = new;

    new->next = next;

    new->prev = prev;

    prev->next = new;

}

链表节点的删除

static inline void __list_del(struct list_head * prev, struct list_head * next)

{

    next->prev = prev;

    prev->next = next;

}

 

 

时间: 2024-10-26 07:39:04

linux内核系列(一)内核数据结构之链表的相关文章

AT&T汇编语言与GCC内嵌汇编,Linux内核数据结构之链表

最近在看<Linux内核源代码情景分析>,作者毛德操.书中刚开始介绍了AT&T汇编语言与GCC内嵌汇编,以及Linux内核数据结构之链表.可惜书中介绍的不够全面.因为推荐大家阅读下面两篇文章.很不错. AT&T汇编语言与GCC内嵌汇编:http://grid.hust.edu.cn/zyshao/Teaching_Material/OSEngineering/Chapter2.pdf. Linux内核数据结构之链表:http://www.cnblogs.com/Anker/p/

Linux Kernel系列 - 牛X的内核代码注释

Hanks.Wang - 专注于操作系统与移动安全研究,Linux-Kernel/SELinux/SEAndroid/TrustZone/Encription/MDM    Mail - [email protected] 牛X的内核代码注释 大牛的代码质量高稳定性好,而且逻辑清晰易读性比较强,今天看到Linux Kernel红黑树的代码时,瞬间被大牛的代码注释秒杀了,看到这样注释的代码真的有阅读的欲望,啥也不说了,上图吧 Linux Kernel系列 - 牛X的内核代码注释

Linux 4.18内核系列已过时

的Linux内核维护者Greg Kroah-Hartman宣布Linux 4.18内核系列的生命周期结束,敦促用户尽快将他们的发行版升级到更新的内核. Linux 4.18内核由Linux Liny Torvalds于2018年8月12日发布,该系列为32位ARM架构引入了Spectre Variant 1和Spectre Variant 2,为ARM64(AArch64)和ARMv8架构引入了Spectre Variant 4,并为Radeon Vega 20 GPU提供支持. 它还为32位(

Linux 5.3内核系列已终止支持 建议用户升级至Linux Kernel 5.4

上周,Linux 内核开发人员 Greg Kroah-Hartman 宣布了 Linux 5.3 内核系列的第 18 个维护更新(5.3.18).该版本共更改了 59 个文件,插入 369 项 / 移除 329 项.此外开发者指出,这将是 Linux 5.3 内核系列的最后一个维护更新.随着 Linux Kernel 5.3 抵达 EoL,官方建议用户及时更新至 Linux Kernel 5.4,以获得全面的支持与保障. Greg Kroah-Hartman 在<a href="http:

linux内核系列(一)编译安装Linux内核 2.6.18

1.配置环境 操作系统:CentOS 5.2 下载linux-2.6.18版本的内核,网址:http://www.kernel.org 说明:该编译文档适合2.6.18以上的Linux内核版本,只需所编译的 Linux内核版本不能低于Linux操作系统自身的内核版本,不然会遇到很多问题:   2.开始编译 cp  ./ linux-2.6.18.tar.gz  /usr/src/ tar –zxvf ./linux-2.6.18.tar.gz cd /usr/src/linux-2.6.18 /

浅析Linux字符设备驱动程序内核机制

前段时间在学习linux设备驱动的时候,看了陈学松著的<深入Linux设备驱动程序内核机制>一书. 说实话.这是一本非常好的书,作者不但给出了在设备驱动程序开发过程中的所须要的知识点(如对应的函数和数据结构),还深入到linux内核里去分析了这些函数或数据结构的原理.对设备驱动开发的整个过程和原理都分析的非常到位.但可能是因为知识点太多.原理也比較深的原因,这本书在知识点的排版上跨度有些大.所以读起来显得有点吃力,可是假设第一遍看的比較认真的话,再回头看第二次就真的可以非常好地理解作者的写作思

Linux内核学习笔记——内核内存管理方式

一 页 内核把物理页作为内存管理的基本单位:内存管理单元(MMU)把虚拟地址转换为物理 地址,通常以页为单位进行处理.MMU以页大小为单位来管理系统中的也表. 32位系统:页大小4KB 64位系统:页大小8KB 内核用相应的数据结构表示系统中的每个物理页: <linux/mm_types.h> struct page {} 内核通过这样的数据结构管理系统中所有的页,因此内核判断一个页是否空闲,谁有拥有这个页 ,拥有者可能是:用户空间进程.动态分配的内核数据.静态内核代码.页高速缓存…… 系统中

Linux内核剖析 之 内核同步

主要内容 1.内核请求何时以交错(interleave)的方式执行以及交错程度如何. 2.内核所实现的基本同步机制. 3.通常情况下如何使用内核提供的同步机制. 内核如何为不同的请求服务 哪些服务? ====>>> 为了更好地理解内核是如何执行的,我们把内核看做必须满足两种请求的侍者:一种请求来自顾客,另一种请求来自数量有限的几个不同的老板.对于不同的请求,侍者采用如下的策略: 1.老板提出请求时,如果侍者空闲,则侍者开始为老板服务. 2.如果老板提出请求时侍者正在为顾客服务,那么侍者停

Linux入门之CentOS7内核编译三部曲(1)

Linux入门之CentOS7内核编译三部曲(1) 我们知道,一个Linux系统的主要组成是由liunx内核核心和一些支持模块组合而成的.但是在某些场合中,需要某项功能,而当前内核的核心或者模块不支持此功能,那么就需要对内核进行一个升级或者重新编译内核添加相应的功能,以此提供了对此功能的支持. 编译前的准备 认识kernel 所为kernel,就是一种操作系统的核心,当然也是一个文件,而这种核心提供了对一些硬件的支持,一般来说其中包含了一些对常见硬件核心驱动的核心代码.启动系统时会通过加载MBR