pat 1018 Public Bike Management

题意有三:1.时间最短 2.送出车辆最少 3.回收车辆最少

陷阱有一:调整路径上站点的车辆数目时,不能把后面站点多出来的车辆返补回前面车辆数不够的站点。乍看之下这是符合逻辑的,因为在前面的站点的时候不能知道后面的站点是什么情况,所以按理应该逐个调整合理,后面的站点影响不到前面的调整。但是细想之后发现这其实是很死板的做法,现实当中设计这样一个管理系统肯定能够实时收集每个站点的自行车数,所以在出发前应该就能得出这条路径上总的自行车数目,继而就能得到最优的送出数。但四十是介样子素通不过滴。

#include <iostream>
#include <vector>
#include <fstream>
#include <algorithm>
#define MAX 501
#define INF 0x6FFFFFFF

using namespace std;

struct Path
{//路径
    vector<int> station;//路径上的站点
    int sent;//该路径需要送出的车辆数
    int back;//需要带回的车辆数
};

int map[MAX][MAX];//是否连通
int visited[MAX];//访问标志
int bikes[MAX], dist[MAX];//站点车辆和从PMBC到该站点的最短路径
vector<Path> path;
Path pathTemp;

bool compare(Path p1, Path p2)
{//路径比较,按照送出数和归还数
    if(p1.sent<p2.sent)
        return true;
    else if(p1.sent==p2.sent && p1.back<p2.back)
        return true;
    else
        return false;
}

void Init()
{//初始化状态
    for(int i=0; i<MAX; i++)
    {
        visited[i] = 0;
        dist[i] = INF;
        for(int j=0; j<MAX; j++)
            map[i][j] = 0;
    }
}

void Dijkstra(int node, int n)
{//node 为起始节点,n为节点数
    for(int i=0; i<n; i++)
        dist[i] = INF;//初始距离均设为无穷大

    dist[node] = 0;//起始节点距离为0

    for(;;)
    {
        int min = INF;
        int num = -1;
        for(int i=0; i<n; i++)
        {//找到现存未知的距离最小的节点
            if(dist[i]<=min && visited[i] == 0)
            {    min = dist[i];    num = i;}
        }

        if(num == -1)
            break;

        visited[num] = 1;//将该节点标为已知
        for(int i=0; i<n; i++)
        {
            if(!visited[i] && map[i][num]!=0 )
            //更新相邻节点路径
                if(dist[i] > dist[num]+ map[num][i])
                    dist[i] = dist[num] + map[num][i];
        }
    }
}

void DFS(int station, int dest, int _dist, int n)
{//当前站点,目标站点,路径,总站点数
    visited[station] = 1;
    if(station!=0)
        pathTemp.station.push_back(station);//路径更新
    if(station == dest)
    {
        if(_dist == dist[dest]) //到达站点且距离满足dijkstra找到的最短距离
            path.push_back(pathTemp);
        return;
    }

    if(_dist>dist[dest])
        return;

    for(int i=0; i<n; i++)
    {
        if(!visited[i] && map[station][i]!=0)
        {
            DFS(i, dest, _dist + map[station][i], n);
            pathTemp.station.pop_back();//回调,弹出节点,避免重复写入
            visited[i] = 0;
        }
    }
}

int main(void)
{
    //ifstream fin("data.txt");

    int bikeMax, stationNum, problemStation, roadNum;
    cin>>bikeMax>>stationNum>>problemStation>>roadNum;
    Init();//初始化

    for(int i=1; i<stationNum+1; i++)
        cin>>bikes[i];
    for(int i=0; i<roadNum; i++)
    {
        int station1, station2, time;
        cin>>station1>>station2>>time;
        map[station1][station2] = time;
        map[station2][station1] = time;
    }

    Dijkstra(0, stationNum+1);//寻求最优路径

    for(int i=0; i<stationNum+1; i++)//访问标志复原
        visited[i] = 0;

    DFS(0, problemStation, 0, stationNum+1);

    //计算每个时间最优路径下需要送出和带回的自行车数
    int extra;
    for(int i=0; i<path.size(); i++)
    {
        extra = 0;//从路径上前面站点带来的多余车辆
        for(int j=0; j<path[i].station.size(); j++)
        {
            if(bikes[path[i].station[j]]<bikeMax/2)
            {
                if(extra>=bikeMax/2 - bikes[path[i].station[j]])
                    extra -= bikeMax/2 - bikes[path[i].station[j]];
                else
                {
                    path[i].sent += bikeMax/2 - bikes[path[i].station[j]] - extra;
                    extra = 0;
                }
            }
            if(bikes[path[i].station[j]]>bikeMax/2)
                extra += bikes[path[i].station[j]] - bikeMax/2;
        }
        path[i].back = extra;
    }

    sort(path.begin(), path.end(), compare);//按照少送出,少带回的原则排序

    cout<<path[0].sent<<" "<<0;
    for(int i=0; i<path[0].station.size(); i++)
        cout<<"->"<<path[0].station[i];
    cout<<" "<<path[0].back;
    return 0;
}

pat 1018 Public Bike Management

时间: 2024-12-29 05:14:08

pat 1018 Public Bike Management的相关文章

PAT 甲级 1018 Public Bike Management (30 分)(dijstra+dfs case 7 过不了求助!!!)

1018 Public Bike Management (30 分)   There is a public bike service in Hangzhou City which provides great convenience to the tourists from all over the world. One may rent a bike at any station and return it to any other stations in the city. The Pub

1018. Public Bike Management (30)

比较复杂的dfs 注意算好到底需要send多少take back多少 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue There is a public bike service in Hangzhou City which provides great convenience to the tourists from all over the world. One may rent a bike at an

1018 Public Bike Management (30)(30 分)

时间限制400 ms 内存限制65536 kB 代码长度限制16000 B There is a public bike service in Hangzhou City which provides great convenience to the tourists from all over the world. One may rent a bike at any station and return it to any other stations in the city. The Pu

PTA (Advanced Level)1018 Public Bike Management

Public Bike Management There is a public bike service in Hangzhou City which provides great convenience to the tourists from all over the world. One may rent a bike at any station and return it to any other stations in the city. The Public Bike Manag

PAT A1018.Public Bike Management

There is a public bike service in Hangzhou City which provides great convenience to the tourists from all over the world. One may rent a bike at any station and return it to any other stations in the city. The Public Bike Management Center (PBMC) kee

1018 Public Bike Management (30分)

There is a public bike service in Hangzhou City which provides great convenience to the tourists from all over the world. One may rent a bike at any station and return it to any other stations in the city. The Public Bike Management Center (PBMC) kee

PAT (Advanced Level) 1018 Public Bike Management

题解 看完这题,直接来一套最短路.这次WA了,淦. 因为这道题路径的选择条件为:第一标尺是距离短优先,第二标尺是从管理中心带出去的自行车少的优先,第三标尺是从站点带回去的自行车少的优先. 只用最短路算法解决这道题的话,第二标尺和第三标尺不能被正确维护,因为最短路算法的特点,会出现改变其他站点的自行车数量,但是这个站点并不在你的最终路径上的情况. 所以正确解法是先利用最短路算法将距离最短的路径(可能不止一条)保存下来,再利用深搜对这些在距离上最优的路径进行第二标尺和第三标尺的筛选,求得最优解. 错

PAT (Advanced Level) 1018. Public Bike Management (30)

先找出可能在最短路上的边,图变成了一个DAG,然后在新图上DFS求答案就可以了. #include<iostream> #include<cstring> #include<cmath> #include<algorithm> #include<cstdio> #include<queue> #include<vector> using namespace std; const int INF=0x7FFFFFFF; co

1018 Public Bike Management (30 分)(图的遍历and最短路径)

这题不能直接在Dijkstra中写这个第一 标尺和第二标尺的要求 因为这是需要完整路径以后才能计算的  所以写完后可以在遍历 #include<bits/stdc++.h> using namespace std; int cmax,n,v,m; const int N=1e3; int weight[N]; int mp[N][N]; const int inf=0x3f3f3f3f; int dis[N]; int vis[N]; vector<int>path[N]; voi