UVa 11361 (计数 递推) Investigating Div-Sum Property

题意:

统计[a, b]中有多少个数字满足:自身是k的倍数,而且各个数字之和也是k的倍数。

分析:

详细分析见《训练之南》吧,=_=||

书上提出了一个模板的概念,有了模板我们就可以分块计算。

虽然书上定义f(x)表示不超过x的非负整数且满足条件的个数,但为了编码方便,代码中f(x)的含义为0~x-1中满足条件的个数。

这样最终所求为f(b+1) - f(a)

 1 #include <bits/stdc++.h>
 2 using namespace std;
 3
 4 int MOD;
 5 int pow_ten[10];
 6 int f[11][90][90];
 7
 8 inline int mod(int n)
 9 { return ((n % MOD) + MOD) % MOD; }
10
11 int F(int d, int m1, int m2)
12 {
13     if(d == 0) return m1 == 0 && m2 == 0 ? 1 : 0;
14     int& ans = f[d][m1][m2];
15     if(ans >= 0) return ans;
16
17     ans = 0;
18     for(int x = 0; x <= 9; x++)
19         ans += F(d-1, mod(m1-x), mod(m2-x*pow_ten[d-1]));
20     return ans;
21 }
22
23 int sum(int n)
24 {
25     char digits[11];
26     sprintf(digits, "%d", n);
27     int nd = strlen(digits);
28
29     int base = 0;
30     int sumd = 0;
31     int ans = 0;
32     for(int i = 0; i < nd; i++)
33     {
34         int na = nd - i - 1;
35         for(int d = 0; d < digits[i] - ‘0‘; d++)
36             ans += F(na, mod(-sumd-d), mod(-base-d*pow_ten[na]));
37         sumd += digits[i] - ‘0‘;
38         base += (digits[i] - ‘0‘) * pow_ten[na];
39     }
40     return ans;
41 }
42
43 int main()
44 {
45     //freopen("in.txt", "r", stdin);
46
47     pow_ten[0] = 1;
48     for(int i = 1; i <= 9; i++) pow_ten[i] = pow_ten[i - 1] * 10;
49
50     int T, a, b;
51     scanf("%d", &T);
52     while(T--)
53     {
54         scanf("%d%d%d", &a, &b, &MOD);
55         if(MOD > 82) { puts("0"); continue; }
56         memset(f, -1, sizeof(f));
57         printf("%d\n", sum(b+1) - sum(a));
58     }
59
60     return 0;
61 }

代码君

时间: 2024-10-11 03:22:13

UVa 11361 (计数 递推) Investigating Div-Sum Property的相关文章

Yue Fei&#39;s Battle(组合计数递推)

//求一个直径为 k 的树有多少种形态,每个点的度不超过 3 // 非常完美的分析,学到了,就是要细细推,并且写的时候要细心 还有除法取模需要用逆元 #include <iostream> #include <stdio.h> #include <string.h> #include <math.h> #include <stdlib.h> using namespace std; #define MOD 1000000007 #define L

UVA - 624CD(递推+ 路径打印)

题目: UVA - 624CD(递推+ 路径打印) 题目大意:给出一组数据,给定一个N,问这些数据能否拼凑出不大于N的最接近N的数据,可以的话输出最接近N的数据,并且打印出最长路径(要求要找输入的顺序). 解题思路:dp[j]:代表凑出J这个数值最多需要几个数.d[j] = Max (d[j - v[i]] + 1. 打印路径,如果取得是最小值,那么顺着dp标记的值的减小就可以找到路径,但是取的是最大值,这样它的下一个并不能直接靠dp数组的值来判断,而是要判断到最后是否最终的值等于0.用回溯.

UVA 12034 - Race(递推)

UVA 12034 - Race 题目链接 题意:给定n匹马,要求出可能的排名情况(可能并列) 思路:递推,dp[i][j]表示i匹马的时候有j种不同名次,那么dp[i][j]可以由dp[i - 1][j - 1]插入j个不同位置得来,或者由dp[i - 1][j]放入已有j的名次得来,得到递推式dp[i][j] = j * (dp[i - 1][j - 1] + dp[i - 1][j]); 然后对于n的答案为sum{dp[n][j]} (1 <= j <= n) 代码: #include

UVA 10237 - Bishops(递推)

UVA 10237 - Bishops 题目链接 题意:问一个n * n棋盘能放k个主教(攻击斜线)的方案数. 思路:递推,首先考虑一个问题,在一个n?n棋盘上,放k个车的方案数. 那么设dp[i][j]为i行用了j个车的方案数,由于每行只能放一个车,那么考虑i行放不放车,如果放车,那么能放的位置有n?(j?1)个位置,为dp[i?1][j?1]?(n?(j?1)). 如果不放那么情况为dp[i?1][j]. 所以递推式为dp[i][j]=dp[i][j?1]+dp[i?1][j?1]?(n?(

数的计数——递推算法

Problem Description 我们要求找出具有下列性质数的个数(包括输入的自然数n).先输入一个自然数n(n<=1000),然后对此自然数按照如下方法进行处理: 不作任何处理: 在它的左边加上一个自然数,但该自然数不能超过原数的一半: 加上数后,继续按此规则进行处理,直到不能再加自然数为止. Input 输入有多组数据,每组数据为自然数n. Output 对于每组数据输出满足条件的数的个数. Sample Input 6 Sample Output 6 Hint 满足条件的数为6,16

UVA 1425 - Metal(递推)

UVA 1425 - Metal 题目链接 题意:给定一个金属板,上面有一些点,现在有一台切割机,要切割出单调四边形,由所有点组成,问有多少种情况. 思路:递推,设dp[i][j],i为上面点,j为下面点,现在多添加一个点k进来,那么原来的dp[i][j]必然要有一维为k - 1,枚举另外一维就是所有情况.然后再添加点进来的过程中还要考虑能不能加进来,写一个判断函数,把连接线之间所有点枚举一边利用向量叉积去判断即可,如果是上面的线,就不能有点在上面,如果是下面的线,就不能有点再下面. 代码: #

uva 11375 - Matches(递推)

题目链接:11375 - Matches 题目大意:给出n根火柴,问说能组成多少种数字,要求说0不能打头. 解题思路:d[i]表示i根火柴能够组成的数量,d[i+c[j]] = d[i+c[j]] + d[i]; 最后dp[i]表示小于等于i根火柴能组成的数量,dp[i]=∑jidp[j]. 高精度. #include <cstdio> #include <cstring> #include <iostream> using namespace std; const i

uva 279 - Spin(递推)

题目链接:uva 279 - Spin 题目大意:进行一个游戏,给出初始状态,要求问说最少多少步可以让所有的环移动出来.移动规则如图所示. 解题思路:一开始以为是隐式图搜索,写完TLE了.后来发现这道题和汉诺塔是一个思路,都是采取最优策略,并且说左边环的状态不会影响右边环.所以dp[i]表示从右边数,第i个为v,其他均为h的步数(由全h变换至). 模拟最优过程有dp[i]=dp[i?1]?2+i?2?1 对已给定状态,可看做由全h变换到该状态的步数.根据容斥原理,第奇数个v为加,偶数个v为减.最

UVa 10943 (数学 递推) How do you add?

将K个不超过N的非负整数加起来,使它们的和为N,一共有多少种方法. 设d(i, j)表示j个不超过i的非负整数之和为i的方法数. d(i, j) = sum{ d(k, j-1) | 0 ≤ k ≤ i },可以理解为前j-1个数之和为i-k,最后一个数为k 还有一种更快的递推办法,把这个问题转化为将N个小球放到K个盒子中的方法数,盒子可以为空. 就等价于求x1 + x2 +...+ xK = N的非负整数解的个数,根据组合数学的知识容易算出结果为C(N+K-1, K-1). 所以也可以这样递推