POJ 1113 || HDU 1348: wall(凸包问题)

传送门:

POJ:点击打开链接

HDU:点击打开链接

下面是POJ上的题;

Wall

Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 29121   Accepted: 9746

Description

Once upon a time there was a greedy King who ordered his chief Architect to build a wall around the King‘s castle. The King was so greedy, that he would not listen to his Architect‘s proposals to build a beautiful brick wall with
a perfect shape and nice tall towers. Instead, he ordered to build the wall around the whole castle using the least amount of stone and labor, but demanded that the wall should not come closer to the castle than a certain distance. If the King finds that the
Architect has used more resources to build the wall than it was absolutely necessary to satisfy those requirements, then the Architect will loose his head. Moreover, he demanded Architect to introduce at once a plan of the wall listing the exact amount of
resources that are needed to build the wall.

Your task is to help poor Architect to save his head, by writing a program that will find the minimum possible length of the wall that he could build around the castle to satisfy King‘s requirements.

The task is somewhat simplified by the fact, that the King‘s castle has a polygonal shape and is situated on a flat ground. The Architect has already established a Cartesian coordinate system and has precisely measured the coordinates of all castle‘s vertices
in feet.

Input

The first line of the input file contains two integer numbers N and L separated by a space. N (3 <= N <= 1000) is the number of vertices in the King‘s castle, and L (1 <= L <= 1000) is the minimal number of feet that King allows
for the wall to come close to the castle.

Next N lines describe coordinates of castle‘s vertices in a clockwise order. Each line contains two integer numbers Xi and Yi separated by a space (-10000 <= Xi, Yi <= 10000) that represent the coordinates of ith vertex. All vertices are different and the sides
of the castle do not intersect anywhere except for vertices.

Output

Write to the output file the single number that represents the minimal possible length of the wall in feet that could be built around the castle to satisfy King‘s requirements. You must present the integer number of feet to the
King, because the floating numbers are not invented yet. However, you must round the result in such a way, that it is accurate to 8 inches (1 foot is equal to 12 inches), since the King will not tolerate larger error in the estimates.

Sample Input

9 100
200 400
300 400
300 300
400 300
400 400
500 400
500 200
350 200
200 200

Sample Output

1628

Hint

结果四舍五入就可以了

题意大致就是要你求将所有点包起来的那个面的最小周长, 以及还有一个以L为半径圆的周长。。

用的是Andrew算法

</pre><pre name="code" class="cpp">

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<vector>
#include<queue>
#include<sstream>
#include<cmath>

using namespace std;

#define f1(i, n) for(int i=0; i<n; i++)
#define f2(i, m) for(int i=1; i<=m; i++)
#define f3(i, n) for(int i=n; i>=0; i--)
#define M 1005
#define PI 3.1415926

struct Point
{
    double x, y;
};

void sort(Point *p, int n)   //按照x从小到大排序(如果x相同, 按照y从小到大排序)
{
    Point temp;
    f1(i, n-1)
    f1(j, n-i-1)
    {
        if( (p[j].x > p[j+1].x) || (p[j].x==p[j+1].x && p[j].y>p[j+1].y) )
        {
            temp = p[j];
            p[j] = p[j+1];
            p[j+1] = temp;
        }
    }
}

int cross(int x1, int y1, int x2, int y2)      //看P[i]是否是在其内部。。</span></span>
{
    if(x1*y2-x2*y1<=0)                        //叉积小于0,说明p[i]在当前前进方向的右边,因此需要从凸包中删除c[m-1],c[m-2]</span><span>
        return 0;
    else
        return 1;
}

double dis(Point a, Point b)//求两个凸包点之间的长度。。</span><span>
{
    return sqrt( (a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y) );
}

int convexhull(Point *p, Point *c, int n)
{
    int m = 0;
    f1(i, n)//下凸包</span><span>
    {
        while( m>1 && !cross(c[m-2].x-c[m-1].x, c[m-2].y-c[m-1].y, c[m-2].x-p[i].x, c[m-2].y-p[i].y) )
            m--;
        c[m++] = p[i];
    }
    int k = m;
    f3(i, n-2)//求上凸包</span><span>
    {
        while( m>k && !cross(c[m-2].x-c[m-1].x, c[m-2].y-c[m-1].y, c[m-2].x-p[i].x, c[m-2].y-p[i].y) )
            m--;
        c[m++] = p[i];
    }
    if(n>1)
        m--;
    return m;
}

int main()
{
    Point a[M], p[M];
    double sum;
    int n, r;
    while( cin>>n>>r )
    {
        sum=0.0;

        f1(i, n)
        scanf("%lf %lf", &a[i].x, &a[i].y);
        sort (a, n);
        int m = convexhull(a, p, n);
        f2(i, m)
        sum+=dis( p[i], p[i-1] );
        sum+=2*PI*r;
        printf("%.lf\n", sum);
    }
      return 0;
}


我也不知道为什么。。我用lf用G++提交就WA, 用c++就AC。。看讨论区里也说用lf提交错。。把其改为f就对了。。可能G++的输出默认为f把。。。~~(╯﹏╰)b

下面是HDU上AC的代码。。之所以贴出来, 是因为PE过一次。。要注意一下格式。。

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<vector>
#include<queue>
#include<sstream>
#include<cmath>

using namespace std;

#define f1(i, n) for(int i=0; i<n; i++)
#define f2(i, m) for(int i=1; i<=m; i++)
#define f3(i, n) for(int i=n; i>=0; i--)
#define M 1005
#define PI 3.1415926

struct Point
{
    double x, y;
};

void sort(Point *p, int n)
{
    Point temp;
    f1(i, n-1)
    f1(j, n-i-1)
    {
        if( (p[j].x > p[j+1].x) || (p[j].x==p[j+1].x && p[j].y>p[j+1].y) )
        {
            temp = p[j];
            p[j] = p[j+1];
            p[j+1] = temp;
        }
    }
}

int cross(int x1, int y1, int x2, int y2)
{
    if(x1*y2-x2*y1<=0)
        return 0;
    else
        return 1;
}

double dis(Point a, Point b)
{
    return sqrt( (a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y) );
}

int convexhull(Point *p, Point *c, int n)
{
    int m = 0;
    f1(i, n)
    {
        while( m>1 && !cross(c[m-2].x-c[m-1].x, c[m-2].y-c[m-1].y, c[m-2].x-p[i].x, c[m-2].y-p[i].y) )
            m--;
        c[m++] = p[i];
    }
    int k = m;
    f3(i, n-2)
    {
        while( m>k && !cross(c[m-2].x-c[m-1].x, c[m-2].y-c[m-1].y, c[m-2].x-p[i].x, c[m-2].y-p[i].y) )
            m--;
        c[m++] = p[i];
    }
    if(n>1)
        m--;
    return m;
}

int main()
{
    Point a[M], p[M];
    double sum;
    int t;
    while( cin>>t )
    {
        while( t-- )
        {
            sum=0.0;
            int n, r;
            cin>>n>>r;
            f1(i, n)
            scanf("%lf %lf", &a[i].x, &a[i].y);
            sort (a, n);
            int m = convexhull(a, p, n);
            f2(i, m)
            sum+=dis( p[i], p[i-1] );
            sum+=2*PI*r;
            printf("%.lf\n", sum);
            if(t)
                printf("\n");
        }
    }

    return 0;
}

POJ 1113 || HDU 1348: wall(凸包问题)

时间: 2024-10-19 04:24:05

POJ 1113 || HDU 1348: wall(凸包问题)的相关文章

POJ 1113&amp;&amp;HDU 1348

题意:凸包周长+一个完整的圆周长.因为走一圈,经过拐点时,所形成的扇形的内角和是360度,故一个完整的圆. 模板题,之前写的Graham模板不对,WR了很多发....POJ上的AC代码 1 #include<iostream> 2 #include<cstdio> 3 #include<algorithm> 4 #include<cstring> 5 #include<set> 6 #include<stdio.h> 7 #inclu

hdu 1348 Wall (凸包)

Wall Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 3139    Accepted Submission(s): 888 Problem Description Once upon a time there was a greedy King who ordered his chief Architect to build a w

hdu 1348 Wall (凸包模板)

/* 题意: 求得n个点的凸包,然后求与凸包相距l的外圈的周长. 答案为n点的凸包周长加上半径为L的圆的周长 */ # include <stdio.h> # include <math.h> # include <string.h> # include <algorithm> using namespace std; # define PI acos(-1.0) struct node { int x; int y; }; node a[1010],res

hdu 1348 (凸包求周长)

链接:http://acm.hdu.edu.cn/showproblem.php?pid=1348 Wall Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 3229    Accepted Submission(s): 919 Problem Description Once upon a time there was a greedy

POJ 3528 hdu 3662 三维凸包模板题

POJ 3528题:http://poj.org/problem?id=3528 HDU 3662:http://acm.hdu.edu.cn/showproblem.php?pid=3662 一个是求三维凸包面数,一个是求三维凸包表面积,都是很裸的. 贴代码: #include<stdio.h> #include<algorithm> #include<string.h> #include<math.h> #include<stdlib.h>

hdu 1348 Wall(凸包模板题)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1348 Wall Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 3386    Accepted Submission(s): 968 Problem Description Once upon a time there was a gre

HDU 1348 Wall 【凸包】

<题目链接> 题目大意: 给出二维坐标轴上 n 个点,这 n 个点构成了一个城堡,国王想建一堵墙,城墙与城堡之间的距离总不小于一个数 L ,求城墙的最小长度,答案四舍五入. 解题分析: 求出这些点所围成的凸包,然后所围城墙的长度就为 该凸包周长 + 以该距离为半径的圆的周长.具体证明如下: 下面的模板还没有整理好 Graham 凸包算法 #include<iostream> #include<cstdio> #include<cmath> #include&

HDOJ 1348 Wall 凸包

Wall Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 4001    Accepted Submission(s): 1131 Problem Description Once upon a time there was a greedy King who ordered his chief Architect to build a

POJ 1113 Wall (凸包)

题目地址:POJ 1113 先求出凸包的周长,然后剩下的弧合起来一定是个半径为l的圆,然后再加上以l为半径的圆的周长即可. 代码如下: #include <iostream> #include <cstdio> #include <string> #include <cstring> #include <stdlib.h> #include <math.h> #include <ctype.h> #include <