On Salem set

Let $\mu$ be a Borel probability measure on $R^d$. We say that $\mu$ is an $M_\beta$-measure if its Fourier transformation $\widehat{\mu}$ possesses the following property:
$$\widehat{\mu}(\xi)=o(|\xi|^{-\beta}), |\xi|\to \infty.$$

We define the Fourier dimension of $\mu$ as

$$\dim_F\mu=\sup\{\alpha\in[0,d]:\text{$\mu$ is an  $M_{\alpha/2}$-measure }\}.$$

Then it is easy to verify that

$$\dim_F\mu=\liminf\limits_{|\xi|\to \infty}\frac{-2\log |\widehat{\mu}(\xi)|}{\log |\xi|}^ d.$$

Define the Fourier dimension of a Borel set $E\subset R^d$ as

$$\dim_F E=\sup_{\mu\in \mathcal{P}(M)}\dim_F\mu.$$

Fact 1: $\dim_F E\le \dim_H E.$

In fact, recall that , for $s\ge 0$ the $s$-potential at a point $x\in R^d$ is defined as

$$\phi_s(x)=\int \frac{d\mu(y)}{|x-y|^s}.$$

It can be writtten as

$$\phi_s(x)=(|x|^{-s} \ast \mu)(x)=\int |x-y|^{-s}d\mu(y).$$

On the other hand,  the Fourier transformation of $|x|^{-s}$ is $c |x|^{s-d}$ (see Some useful facts on Fourier transformation). So, we have

$$\widehat{\phi_s}(\xi)=c|\xi|^{s-d}\cdot \widehat{\mu}(\xi).$$

Then, by Parseval‘s theorem (again, see Some useful facts on Fourier transformation) we can obtain the following expression of $s$-energy:

$$I_s(\mu)=\int\phi_s(x)d\mu(x)=c(2\pi)^d\int |\xi|^{s-d}|\widehat{\mu}(\xi)|^2d\mu(\xi). $$

Now, suppose that $t<\dim_F E.$ Then there exists a measure $\mu\in \mathcal{P}(E)$ such that $|\widehat{\mu}(\xi)|\le b |\xi|^{-t/2}$.

Therefore, if $0<s<t$

$$I_s(\mu)\le c_1 \int_{|\xi|\le 1}|\xi|^{s-d}d\mu +c_2 \int_{|\xi|> 1}|\xi|^{s-d}|\xi|^{-t}d\mu<\infty, $$

which implies that $\dim_H E\ge t.$ So, $\dim_F E\le \dim_H E.$

We say that a Borel set $E$ is Salem set if $\dim_F E= \dim_H E.$

See, Sectorial local non-determinism and the geometry of the Brownian sheet by Khoshnevisan, Wu and Xiao, or Falconer,  Chapter 4 in Fractal geometry.

Fact 2: Given $0<s<t<\le 1$, there exists a Borel set $E$ such that $\dim_F E=s$ and $\dim_H E=t.$

See, T. W. Korner, Hausdorff and Fourier dimension, Studia mathematica, 206 (2011), or Christian Bluhm, On a theorem of Kaufman: Cantor-type construction of linear fractal Salem set, Ark. Mat., 36 (1998).   

时间: 2024-11-11 11:33:12

On Salem set的相关文章

Salem and Sticks-萨鲁曼的棍子 CodeForce#1105A 暴力

题目链接:Salem and Sticks 题目原文 Salem gave you ??n sticks with integer positive lengths ??1,??2,-,????a1,a2,-,an. For every stick, you can change its length to any other positive integer length (that is, either shrink or stretch it). The cost of changing

[rap song] eminem &quot;Lose Yourself&quot;

"Lose Yourself" Look, if you had, one shot, or one opportunityTo seize everything you ever wanted. In one momentWould you capture it, or just let it slip?Yo His palms are sweaty, knees weak, arms are heavyThere's vomit on his sweater already, mo

世界主要城市经纬度

城市英文名 城市中文名 所属国家 纬度 经度 Abidjan 阿比让 科特迪瓦 北纬:5°19' 东经:4°01' Abu Dhabi 阿布扎比 阿联酋 北纬:24°27' 东经:54°23' Abuja 阿布贾 尼日利亚 北纬:9°12' 东经:7°11' Acapulco 阿卡普尔科 墨西哥 北纬:16°51' 西经:99°56' Accra 阿克拉 加纳 北纬:5°33' 东经:0°15' Adak 艾达克岛 美国 北纬:51°52' 东经:176°39' Adamstown 亚当斯敦 英

美国地名大全(美国城市名称英文、中文)

近期在做某个项目要用到美国的地名,上网查了一圈都没有比較具体的.专业的,仅仅好自己复制了一个大概有500多个城市.城镇的英文,用谷歌翻译一下,结果例如以下: 谷歌翻译结果,非常多是错误的,边用边改 http://blog.csdn.net/aminfo/article/details/7858403 英文 中文 Birmingham 伯明翰 Montgomery 蒙哥马利 Mobile 莫比尔县 Anniston 安尼斯顿 Gadsden 加兹登 Phoenix 凤凰城 Scottsdale 斯

ViralNova采用故事化的标题来吸引人的注意,发到社交网上后经常让用户疯转。

站长之家(Chinaz.com)注:外国网站ViralNova创业者是如何做到光靠一人之力,让网站价值1亿美元的?在个人的创业过程中也遭遇挫折.创始人DeLong最终选择出售网站,并非是网站运营不善,那又是什么原因呢?下文着重介绍DeLong的创业历程. 数字媒体公司Zealot Networks 收购了ViralNova,总估值高达1亿美元.ViralNova是一个类似于 Buzzfeed类型的媒体,其创立者是 Scott DeLong.当然,DeLong创建ViralNova网站背后也有一个

saga中的saga(A Saga on Sagas)

此文翻译自msdn,侵删. 原文地址:https://msdn.microsoft.com/en-us/library/jj591569.aspx Process Managers, Coordinating Workflows, and Sagas 分清术语 saga这个名词通常被用在CQRS的讨论中,它是指一段在限定上下文(bounded contexts )和聚合(aggregates)之间起协作和路由(coordinates and routes )消息作用的代码.然而,在这个指南中我们

全球城市群Megalopolis

Megalopolis From Wikipedia, the free encyclopedia (Redirected from Megalopolis (city type)) "Supercity" redirects here. For other uses, see Super City. For other uses, see Megalopolis (disambiguation). Population tablesof world cities World's la

内存数据库中的索引技术

引言 传统的数据库管理系统把所有数据都放在磁盘上进行管理,所以称作磁盘数据库(DRDB: Disk-Resident Database).磁盘数据库需要频繁地访问磁盘来进行数据的操作,磁盘的读写速度远远小于CPU处理数据的速度,所以磁盘数据库的瓶颈出现在磁盘读写上. 基于此,内存数据库的概念被提出来了.内存数据库(MMDB:Main Memory Database,也叫主存数据库)[1],就是将数据全部或者大部分放在内存中进行操作的数据库管理系统,对查询处理.并发控制与恢复的算法和数据结构进行重

Cracking Story - How I Cracked Over 122 Million SHA1 and MD5 Hashed Passwords

This is the story about how I cracked 122 million* password hashes with John the Ripper and oclHashcat-plus. Author: m3g9tr0n, Copy Editor: Thireus. It was several months ago, when I (m3g9tr0n) saw a tweet from KoreLogic about atorrent file containin