redis常见性能问题和解决方案?

  1. Master写内存快照,save命令调度rdbSave函数,会阻塞主线程的工作,当快照比较大时对性能影响是非常大的,会间断性暂停服务,所以Master最好不要写内存快照。
  2. Master AOF持久化,如果不重写AOF文件,这个持久化方式对性能的影响是最小的,但是AOF文件会不断增大,AOF文件过大会影响Master重启的恢复速度。
  3. Master调用BGREWRITEAOF重写AOF文件,AOF在重写的时候会占大量的CPU和内存资源,导致服务load过高,出现短暂服务暂停现象。

下面是我的一个实际项目的情况,大概情况是这样的:一个Master,4个Slave,没有 Sharding机制,仅是读写分离,Master负责写入操作和AOF日志备份,AOF文件大概5G,Slave负责读操作,当Master调用 BGREWRITEAOF时,Master和Slave负载会突然陡增,Master的写入请求基本上都不响应了,持续了大概5分钟,Slave的读请求 过也半无法及时响应,Master和Slave的服务器负载图如下:

Master Server load:

Slave server load:

上面的情况本来不会也不应该发生的,是因为以前Master的这个机器是Slave,在上面有一个shell定时任务在每天的上午10点调用 BGREWRITEAOF重写AOF文件,后来由于Master机器down了,就把备份的这个Slave切成Master了,但是这个定时任务忘记删除 了,就导致了上面悲剧情况的发生,原因还是找了几天才找到的。将no-appendfsync-on-rewrite的配置设为yes可以缓解这个问题,设置为yes表示rewrite期间对新写操作不fsync,暂时存在内存中,等rewrite完成后再写入。最好是不开启Master的AOF备份功能。

  1. Redis主从复制的性能问题,第一次Slave向Master同步的实现是:Slave向Master发出同步请求,Master先dump 出rdb文件,然后将rdb文件全量传输给slave,然后Master把缓存的命令转发给Slave,初次同步完成。第二次以及以后的同步实现 是:Master将变量的快照直接实时依次发送给各个Slave。不管什么原因导致Slave和Master断开重连都会重复以上过程。Redis的主从 复制是建立在内存快照的持久化基础上,只要有Slave就一定会有内存快照发生。虽然Redis宣称主从复制无阻塞,但由于磁盘io的限制,如果 Master快照文件比较大,那么dump会耗费比较长的时间,这个过程中Master可能无法响应请求,也就是说服务会中断,对于关键服务,这个后果也 是很可怕的。

以上1.2.3.4根本问题的原因都离不开系统io瓶颈问题,也就是硬盘读写速度不够快,主进程 fsync()/write() 操作被阻塞。

5.单点故障问题,由于目前Redis的主从复制还不够成熟,所以存在明显的单点故障问题,这个目前只能自己做方案解决,如:主动复制,Proxy 实现Slave对Master的替换等,这个也是Redis作者目前比较优先的任务之一,作者的解决方案思路简单优雅

时间: 2024-12-10 13:18:54

redis常见性能问题和解决方案?的相关文章

redis常见的面试题及答案

1.什么是Redis? 2.Redis相比memcached有哪些优势? 3.Redis支持哪几种数据类型? 4.Redis主要消耗什么物理资源? 5.Redis的全称是什么? 6.Redis有哪几种数据淘汰策略? 7.Redis官方为什么不提供Windows版本? 8.一个字符串类型的值能存储最大容量是多少? 9.为什么Redis需要把所有数据放到内存中? 10.Redis集群方案应该怎么做?都有哪些方案? 11.Redis集群方案什么情况下会导致整个集群不可用? 12.MySQL里有2000

常见性能优化策略的总结

本文是一位美团老师把之前所做的各种性能优化的案例和方案加以提炼.总结,以文档的形式沉淀下来,并在内部进行分享.力求达到如下效果: 形成可实践.可借鉴.可参考的各种性能优化的方案以及选型考虑点,同时配合具体的真实案例,其他人遇到相似问题时,不用从零开始: 有助于开阔视野,除了性能优化之外,也能提供通用的常见思路以及方案选型的考虑点,帮助大家培养在方案选型时的意识.思维以及做各种权衡的能力: 常见性能优化策略分类: 代码 之所以把代码放到第一位,是因为这一点最容易引起技术人员的忽视.很多技术人员拿到

常见性能优化策略的总结(转)

add by zhj: 我个人感觉性能优化分析影响性能的因素有哪些,然后按影响力的大小进行排序,然后进行排序. 然后进一步分析每个因素为何会影响性能,把这些因素再找出来,再按影响力大小进行排序.基本上,经过 这两层的分析,基本就够用了.对这些因素思考解决办法. 1. 数据库层 我们的目标是减少IO访问,或者将IO访问进行负载均衡,分配到多台服务器,并行计算. 1.1 数据库的数据存储在硬盘,硬盘访问速度比内存慢太多,即IO多 1.2 数据量大导致扫描记录多,间接导致IO多 1.3 所有数据库访问

常见性能优化策略的总结 good

阅读目录 代码 数据库 缓存 异步 NoSQL JVM调优 多线程与分布式 度量系统(监控.报警.服务依赖管理) 案例一:商家与控制区关系的刷新job 案例二:POI缓存设计与实现 案例三:业务运营后台相关页面的性能优化 add by zhj: 我个人感觉性能优化分析影响性能的因素有哪些,然后按影响力的大小进行排序,然后进行排序. 然后进一步分析每个因素为何会影响性能,把这些因素再找出来,再按影响力大小进行排序.基本上,经过 这两层的分析,基本就够用了.对这些因素思考解决办法. 1. 数据库层

Redis 的性能幻想与残酷现实(转)

2011 年,当初选择 Redis 作为主要的内存数据存储,主要吸引我的是它提供多样的基础数据结构可以很方便的实现业务需求.另一方面又比较担心它的性能是否足以支撑,毕竟当时 Redis 还属于比较新的开源产品.但 Redis 官网宣称其是提供多数据结构的高性能存储,我们对其还是抱有幻想的. 幻想 要了解 Redis 的性能,我们先看看官方的基准性能测试数据,心里有个底. 测试前提 Redis version 2.4.2 Using the TCP loopback Payload size =

常见性能优化策略总结

常见性能优化策略分类 代码 之所以把代码放到第一位,是因为这一点最容易引起技术人员的忽视.很多技术人员拿到一个性能优化的需求以后,言必称缓存.异步.JVM等.实际上,第一步就应该是分析相关的代码,找出相应的瓶颈,再来考虑具体的优化策略.有一些性能问题,完全是由于代码写的不合理,通过直接修改一下代码就能解决问题的,比如for循环次数过多.作了很多无谓的条件判断.相同逻辑重复多次等. 数据库 数据库的调优,总的来说分为以下三部分: SQL调优 这是最常用.每一个技术人员都应该掌握基本的SQL调优手段

Redis常见配置文件详解

Redis常见配置文件详解 # vi redis.conf   daemonize yes #是否以后台进程运行 pidfile /var/run/redis/redis-server.pid    #pid文件位置 port 6379#监听端口 bind 127.0.0.1   #绑定地址,如外网需要连接,设置0.0.0.0 timeout 300     #连接超时时间,单位秒 loglevel notice  #日志级别,分别有: # debug :适用于开发和测试 # verbose :

Redis 的性能幻想与残酷现实

Redis 的性能幻想与残酷现实 2011 年,当初选择 Redis 作为主要的内存数据存储,主要吸引我的是它提供多样的基础数据结构可以很方便的实现业务需求.另一方面又比较担心它的性能是否足以支撑,毕竟当时 Redis 还属于比较新的开源产品.但 Redis 官网宣称其是提供多数据结构的高性能存储,我们对其还是抱有幻想的. 幻想 要了解 Redis 的性能,我们先看看官方的基准性能测试数据,心里有个底. 测试前提 Redis version 2.4.2 Using the TCP loopbac

Redis详解与常见问题解决方案

Redis简介 redis是一个key-value存储系统.和Memcached类似,它支持存储的value类型相对更多,包括string(字符串).list(链表).set(集合).zset(sortedset --有序集合)和hash(哈希类型).这些数据类型都支持push/pop.add/remove及取交集并集和差集及更丰富的操作,而且这些操作都是原子性的.在此基础上,redis支持各种不同方式的排序.与memcached一样,为了保证效率,数据都是缓存在内存中.区别的是redis会周期