GPS通讯 数据包解析

全球时区的划分:

  每个时区跨15°经度。以0°经线为界向东向西各划出7.5°经度,作为0时区。即0时区的经度范围是7.5°W——7.5°E。从7.5°E与7.5°W分别向东、向西每15°经度划分为一个时区,直到东11区和西11区。东11区最东部的经度是172.5°E,由172.5°E——180°之间就是东12区。西11区最西部的经度是172.5°W,由172.5°W——180°之间就是西12区。东、西12区各占经度7.5°,合成一个完整的时区,即全球总共划分为24个时区。东、西12区钟点相同,日期相差1天,因此180°称为理论上的国际日期变更线。
  由于地球的自转运动,不同地区有不同的地方时间,为了解决时间混乱的问题,采取了划分时区的办法。每个时区中央经线所在地的地方时间就是这个时区共用的时间,称为区时。在实际应用中各国不完全按照区时来定时间,许多国家制定一个法定时,作为该国统一使用的时间,例如我国使用120°E的地方时间,称为北京时间。

  GPS 上电后,每隔一定的时间就会返回一定格式的数据,数据格式为:
$信息类型,x,x,x,x,x,x,x,x,x,x,x,x,x每行开头的字符都是‘$‘,接着是信息类型,后面是数据,以逗号分隔开。
一行完整的数据如下:
$GPRMC,080655.00,A,4546.40891,N,12639.65641,E,1.045,328.42,170809,,,A*60

GPS信息类型:

GPGSV:可见卫星信息
GPGLL:地理定位信息
GPRMC:推荐最小定位信息
GPVTG:地面速度信息
GPGGA:GPS定位信息
GPGSA:当前卫星信息
GPRMC 最小定位信息:

数据详解:$GPRMC,<1>,<2>,<3>,<4>,<5>,<6>,<7>,<8>,<9>,<10>,<11>,<12>*hh
  <1> UTC 时间,hhmmss(时分秒)格式
  <2> 定位状态,A=有效定位,V=无效定位
  <3>纬度ddmm.mmmm(度分)格式(前面的0也将被传输)
  <4> 纬度半球N(北半球)或S(南半球)
  <5>经度dddmm.mmmm(度分)格式(前面的0也将被传输)
  <6> 经度半球E(东经)或W(西经)
  <7>地面速率(000.0~999.9节,前面的0也将被传输)
  <8>地面航向(000.0~359.9度,以真北为参考基准,前面的0也将被传输)
  <9> UTC 日期,ddmmyy(日月年)格式
  <10>磁偏角(000.0~180.0度,前面的0也将被传输)
  <11> 磁偏角方向,E(东)或W(西)
  <12>模式指示(仅NMEA01833.00版本输出,A=自主定位,D=差分,E=估算,N=数据无效)

解析内容:

1.时间,这个是格林威治时间,是世界时间(UTC),我们需要把它转换成北京时间(BTC),BTC和UTC差了8个小时,要在这个时间基础上加8个小时。
2. 定位状态,在接收到有效数据前,这个位是‘V’,后面的数据都为空,接到有效数据后,这个位是‘A’,后面才开始有数据。
3. 纬度,我们需要把它转换成度分秒的格式,计算方法:如接收到的纬度是:4546.40891
  4546.40891/100=45.4640891可以直接读出45度, 4546.40891–45*100=46.40891, 可以直接读出46分
  46.40891–46 =0.40891*60=24.5346读出24秒, 所以纬度是:45度46分24秒。
4. 南北纬,这个位有两种值‘N’(北纬)和‘S’(南纬)
5. 经度的计算方法和纬度的计算方法一样
6. 东西经,这个位有两种值‘E’(东经)和‘W’(西经)
7.速率,这个速率值是海里/时,单位是节,要把它转换成千米/时,根据:1海里=1.85公里,把得到的速率乘以1.85。
8. 航向,指的是偏离正北的角度
9. 日期,这个日期是准确的,不需要转换

GPGGA GPS定位数据

数据详解:$GPGGA,<1>,<2>,<3>,<4>,<5>,<6>,<7>,<8>,<9>,M,<10>,M,<11>,<12>*xx<CR><LF>
$GPGGA:起始引导符及语句格式说明(本句为GPS定位数据);
  <1> UTC 时间,格式为hhmmss.sss;
  <2> 纬度,格式为ddmm.mmmm(第一位是零也将传送);
  <3> 纬度半球,N 或S(北纬或南纬)
  <4> 经度,格式为dddmm.mmmm(第一位零也将传送);
  <5> 经度半球,E 或W(东经或西经)
  <6> 定位质量指示,0=定位无效,1=定位有效;
  <7>使用卫星数量,从00到12(第一个零也将传送)
  <8>水平精确度,0.5到99.9
  <9>天线离海平面的高度,-9999.9到9999.9米M指单位米
  <10>大地水准面高度,-9999.9到9999.9米M指单位米
  <11>差分GPS数据期限(RTCMSC-104),最后设立RTCM传送的秒数量
  <12>差分参考基站标号,从0000到1023(首位0也将传送)。

解析内容:

  第9,10 个字段,海平面高度和大地水准面高度,单位是米

GPVTG 地面速度信息   

$GPVTG,<1>,T,<2>,M,<3>,N,<4>,K,<5>*hh
  <1> 以正北为参考基准的地面航向(000~359度,前面的0也将被传输)
  <2> 以磁北为参考基准的地面航向(000~359度,前面的0也将被传输)
  <3> 地面速率(000.0~999.9节,前面的0也将被传输)
  <4> 地面速率(0000.0~1851.8公里/小时,前面的0也将被传输)
  <5> 模式指示(仅NMEA0183 3.00版本输出,A=自主定位,D=差分,E=估算,N=数据无效

GPGSV 可视卫星状态

  例:$GPGSV,2,1,08,06,33,240,45,10,36,074,47,16,21,078,44,17,36,313,42*78
  标准格式: $GPGSV,(1),(2),(3),(4),(5),(6),(7),…(4),(5),(6),(7)*hh(CR)(LF) 
各部分含义为:
  (1)总的GSV语句电文数;2;
  (2)当前GSV语句号:1;
  (3)可视卫星总数:08;
  (4)PRN码(伪随机噪声码) 也可以认为是卫星编号
  (5)仰角(00~90度):33度;
  (6)方位角(000~359度):240度;
  (7)信噪比(00~99dB):45dB(后面依次为第10,16,17号卫星的信息);   *总和校验域;    hh 总和校验数:78;   (CR)(LF)回车,换行。   
注:每条语句最多包括四颗卫星的信息,每颗卫星的信息有四个数据项,即:
    (4)-卫星号,(5)-仰角,(6)-方位角,(7)-信噪比。   
例:
  $GPGSV,3,1,10,24,82,023,40,05,62,285,32,01,62,123,00,17,59,229,28*70
  每条语句包含四部分内容,例如:第一部分是“24,82,023,40”,第二部分是“05,62,285,32”等等。
每部分的第一个词为PRC,第二个词为卫星高程,跟着为方位角和信号强度。
  这个语句里最重要的指标应该算是“信号躁声比(signal-to-noise ratio)”(以下简称为SNR)。
这个数值标示卫星信号的接收率。我们知道,卫星是以相同的强度发射信号,但是传播过程中难免会遇到诸如树和墙之类的 障碍物,这样就影响了信号的识别。
典型的SNR值在0到50之间,其中50表示非常好的信号。(SNR可以达到99)。

GPGSA 当前卫星信息

  例:$GPGSA,A,3,01,20,19,13,,,,,,,,,40.4,24.4,32.2*0A
 
字段0:$GPGSA,语句ID,表明该语句为GPS DOP and Active Satellites(GSA)当前卫星信息   
字段1:定位模式,A=自动手动2D/3D,M=手动2D/3D   
字段2:定位类型,1=未定位,2=2D定位,3=3D定位   
字段3:PRN码(伪随机噪声码),第1信道正在使用的卫星PRN码编号(00)(前导位数不足则补0)   
字段4:PRN码(伪随机噪声码),第2信道正在使用的卫星PRN码编号(00)(前导位数不足则补0)   
字段5:PRN码(伪随机噪声码),第3信道正在使用的卫星PRN码编号(00)(前导位数不足则补0)   
字段6:PRN码(伪随机噪声码),第4信道正在使用的卫星PRN码编号(00)(前导位数不足则补0)   
字段7:PRN码(伪随机噪声码),第5信道正在使用的卫星PRN码编号(00)(前导位数不足则补0)   
字段8:PRN码(伪随机噪声码),第6信道正在使用的卫星PRN码编号(00)(前导位数不足则补0)   
字段9:PRN码(伪随机噪声码),第7信道正在使用的卫星PRN码编号(00)(前导位数不足则补0)   
字段10:PRN码(伪随机噪声码),第8信道正在使用的卫星PRN码编号(00)(前导位数不足则补0)   
字段11:PRN码(伪随机噪声码),第9信道正在使用的卫星PRN码编号(00)(前导位数不足则补0)   
字段12:PRN码(伪随机噪声码),第10信道正在使用的卫星PRN码编号(00)(前导位数不足则补0)   
字段13:PRN码(伪随机噪声码),第11信道正在使用的卫星PRN码编号(00)(前导位数不足则补0)   
字段14:PRN码(伪随机噪声码),第12信道正在使用的卫星PRN码编号(00)(前导位数不足则补0)   
字段15:PDOP综合位置精度因子(0.5 - 99.9)   
字段16:HDOP水平精度因子(0.5 - 99.9)   
字段17:VDOP垂直精度因子(0.5 - 99.9)   
字段18:校验值

以MTK平台主机获取到的数据为例:

$GPRMC,092927.000,A,2235.9058,N,11400.0518,E,0.000,74.11,151216,,D*49
$GPVTG,74.11,T,,M,0.000,N,0.000,K,D*0B
$GPGGA,092927.000,2235.9058,N,11400.0518,E,2,9,1.03,53.1,M,-2.4,M,0.0,0*6B
$GPGSA,A,3,29,18,12,25,10,193,32,14,31,,,,1.34,1.03,0.85*31
$GPGSV,3,1,12,10,77,192,17,25,59,077,42,32,51,359,39,193,49,157,36*48
$GPGSV,3,2,12,31,47,274,25,50,46,122,37,18,45,158,37,14,36,326,18*70
$GPGSV,3,3,12,12,24,045,45,26,17,200,18,29,07,128,38,21,02,174,*79
1
2
3
4
5
6
7
GPRMC的信息以上格式可以解析为:

09h29m27s,有效定位,维度2235.9058(海里/时,单位是节),北半球,经度11400.0518,东经,地面速率0.000,地面航向74.11(偏离正北的角度),UTC日期15日12月16年,磁偏角,磁偏角方向,

GPS的数据解析

需要定义重要的结构体来表示时间和GPS信息

typedef struct{
  int year;
  int month;
  int day;
  int hour;
  int minute;
  int second;
}date_time;

typedef struct{
  date_time D; //时间
  char status; //接收状态
  double latitude; //纬度
  double longitude; //经度
  char NS; //南北半球
  char EW; //东西半球
  double speed; //速度
  double high; //海拔高度
}GPS_INFO;

//得到指定序号的逗号位置
static int GetComma(int num,char *str) //获取逗号信息
{
int i,j=0;
int len=strlen(str);
for(i=0;i<len;i++)
{
if(str[i]==‘,‘)
j++;
if(j==num)
return i+1;
}
return 0;
}

static double get_double_number(char *s) //将数据转化为double类型的数据
{
char buf[128];
int i;
double rev;
i=GetComma(1,s);
strncpy(buf,s,i);
buf[i]=0;
rev=atof(buf);

return rev;

}
static void UTC2BTC(date_time *GPS) //将UTC时间转化为北京时间
{

GPS->second++;
if(GPS->second>59){
GPS->second=0;
GPS->minute++;
if(GPS->minute>59){
GPS->minute=0;
GPS->hour++;
}
}

GPS->hour+=8;
if(GPS->hour>23)
{
GPS->hour-=24;
GPS->day+=1;
if(GPS->month==2 ||
GPS->month==4 ||
GPS->month==6 ||
GPS->month==9 ||
GPS->month==11 ){
if(GPS->day>30){
GPS->day=1;
GPS->month++;
}
}
else{
if(GPS->day>31){
GPS->day=1;
GPS->month++;
}
}
if(GPS->year % 4 == 0 ){
if(GPS->day > 29 && GPS->month ==2){
GPS->day=1;
GPS->month++;
}
}
else{
if(GPS->day>28 &&GPS->month ==2){
GPS->day=1;
GPS->month++;
}
}
if(GPS->month>12){
GPS->month-=12;
GPS->year++;
}
}
}
unsigned char Data_CalcFCS(char *msg_ptr, unsigned char len)
{
unsigned char x;
unsigned char xorResult;

xorResult = 0;

for ( x = 0; x < len; x++, msg_ptr++ )
xorResult = xorResult ^ *msg_ptr;

return ( xorResult );
}

void gps_parse(char *line,GPS_INFO *GPS) //解析GPRMC格式的数据
{
int tmp;
unsigned char status, fcs = 0;
char *ptr = NULL;
char *buf=line;

if(strncmp(buf+3,"RMC",3)==0||strncmp(buf+3,"GGA",3)==0)
{

//printf("GPRMC founded!\n");
if(strncmp(buf+3,"RMC",3)==0)
{
status =buf[GetComma(2,buf)];
if(status == ‘A‘)
{
GPS->D.hour =(buf[ 7]-‘0‘)*10+(buf[ 8]-‘0‘);
GPS->D.minute =(buf[ 9]-‘0‘)*10+(buf[10]-‘0‘);
GPS->D.second =(buf[11]-‘0‘)*10+(buf[12]-‘0‘);
tmp = GetComma(9,buf);
GPS->D.day =(buf[tmp+0]-‘0‘)*10+(buf[tmp+1]-‘0‘);
GPS->D.month =(buf[tmp+2]-‘0‘)*10+(buf[tmp+3]-‘0‘);
GPS->D.year =(buf[tmp+4]-‘0‘)*10+(buf[tmp+5]-‘0‘)+2000;

GPS->status =buf[GetComma(2,buf)];
GPS->latitude =get_double_number(&buf[GetComma(3,buf)]);
GPS->NS =buf[GetComma(4,buf)];
GPS->longitude=get_double_number(&buf[GetComma(5,buf)]);
GPS->EW =buf[GetComma(6,buf)];
}
}

if(strncmp(buf+3,"GGA",3)==0)
{
ptr = strchr(buf,‘*‘);
if(ptr!=NULL){
fcs = strtoul(ptr + 1,NULL,16);
if(fcs == Data_CalcFCS(buf+1,(unsigned char)(ptr-buf-1)))
{
GPS->D.hour =(buf[ 7]-‘0‘)*10+(buf[ 8]-‘0‘);
GPS->D.minute =(buf[ 9]-‘0‘)*10+(buf[10]-‘0‘);
GPS->D.second =(buf[11]-‘0‘)*10+(buf[12]-‘0‘);

GPS->latitude =get_double_number(&buf[GetComma(2,buf)]);
GPS->NS =buf[GetComma(3,buf)];
GPS->longitude=get_double_number(&buf[GetComma(4,buf)]);
GPS->EW =buf[GetComma(5,buf)];
GPS->high = get_double_number(&buf[GetComma(9,buf)]);
}
}
}
#ifdef USE_BEIJING_TIMEZONE
UTC2BTC(&GPS->D);
#endif
}
}

原文地址:https://www.cnblogs.com/wt88/p/11811943.html

时间: 2024-11-08 23:11:52

GPS通讯 数据包解析的相关文章

C++版的网络数据包解析策略(升级版)

初版:http://www.cnblogs.com/wjshan0808/p/6580638.html 说明:在实现了对应的接口后该策略可以适合绝大多数的网络数据包结构 首先,是三个接口 IProduceProxy.h #ifndef _I_PRODUCE_PROXY_H_ #define _I_PRODUCE_PROXY_H_ //Code #define CODE_PRODUCE_PROXY_OK 0x00 //OK #define CODE_PRODUCE_PROXY_NI 0x01 //

九度oj 题目1475:IP数据包解析

题目描述: 我们都学习过计算机网络,知道网络层IP协议数据包的头部格式如下: 其中IHL表示IP头的长度,单位是4字节:总长表示整个数据包的长度,单位是1字节. 传输层的TCP协议数据段的头部格式如下: 头部长度单位为4字节. 你的任务是,简要分析输入数据中的若干个TCP数据段的头部. 详细要求请见输入输出部分的说明. 输入: 第一行为一个整数T,代表测试数据的组数. 以下有T行,每行都是一个TCP数据包的头部分,字节用16进制表示,以空格隔开.数据保证字节之间仅有一个空格,且行首行尾没有多余的

C#百度图片识别API调用返回数据包解析

百度图片识别api接口 public static JObject GeneralBasic(string apikey,string secretkey,string path) { var client = new Baidu.Aip.Ocr.Ocr(apikey, secretkey); var image = File.ReadAllBytes(path); // 通用文字识别 var result = client.GeneralBasic(image, null); return r

在Linux中如何使用命令进行RS-232串口通信和数据包解析

文章首发于浩瀚先森博客 1. 获取串口号 在Linux系统中一切皆为文件,所以串口端口号也不例外,都是以设备文件的形式出现.也就是说我们可以用访问文本文件的命令来访问它们. a. 一般串口都是以/dev/ttyS#的格式显示,所以第一个连接的串口就是/dev/ttyS0,第二个连接的串口就是/dev/ttyS1-以此类推. b. USB转串口适配,没有额外驱动,它们会显示为/dev/ttyUSB#,如/dev/ttyUSB0 2. 配置串口属性 我们可以使用stty命令来更改配置串口属性(详情查

九度1475 - IP数据包解析(北邮)

这题目就是一个处理字符串的简单题目,但是一开始我没有用到IHL,还是考验了一些计网的知识的.我看到有一个人写的很简洁,所以贴他的代码,给大家看看. #include<stdio.h> #include<string.h> int num(char *c){ // 字符转换为数字 if(*c>='0'&&*c<='9') return *c-'0'; else return *c-'a'+10; } int sum1(char *p){ // 求地址 re

c#网络通信框架networkcomms内核解析之八 数据包的核心处理器

我们先回顾一个 c#网络通信框架networkcomms内核解析之六 处理接收到的二进制数据 中,主程序把PacketBuilder 中的数据交给核心处理器处理的过程 //创建优先级队列项目 PriorityQueueItem item = new PriorityQueueItem(priority, this, topPacketHeader, packetBuilder.ReadDataSection(packetHeaderSize, topPacketHeader.PayloadPac

利用Wireshark截取数据包,并对数据包进行解析

利用Wireshark截取ICMP数据包,并对数据包进行解析 wireshark安装文件下载地址:http://yunpan.cn/QiHGK5sPtWRyN (提取码:0bbc) 安装步骤: 解压文件之后,在\wireshark-win32-1.4.9中文版\文件夹中找到安装文件,双击即可安装. 安装完成之后,双击wireshark图标即可启动,界面如下: 抓包步骤: 1.点击开始按钮列出可以抓包的接口: 2.点击选项可以配置抓包参数: 3.配置完成点击开始,即可开始抓包: 4.点击停止完成抓

【转载】串口中怎样接收一个完整数据包的解析

这里以串口作为传输媒介,介绍下怎样来发送接收一个完整的数据包.过程涉及到封包与解包.设计一个良好的包传输机制很有利于数据传输的稳定性以及正确性.串口只是一种传输媒介,这种包机制同时也可以用于SPI,I2C的总线下的数据传输.在单片机通信系统(多机通信以及PC与单片机通信)中,是很常见的问题. 一.根据帧头帧尾或者帧长检测一个数据帧 1.帧头+数据+校验+帧尾 这是一个典型的方案,但是对帧头与帧尾在设计的时候都要注意,也就是说帧头.帧尾不能在所传输的数据域中出现,一旦出现可能就被误判.如果用中断来

c#网络通信框架networkcomms内核解析之七 数据包创建器(PacketBuilder)

PacketBuilder 数据包创建器,用于辅助创建数据包. 程序把Tcp连接上收到的二进制数据暂时存储在 packetBuilder中,如果收到的数据足够多,程序会把数据包包头解析出来,并根据数据包包头中的数据,解析出数据包大小,根据数据包大小,从PacketBuilder中截取相应的二进制数据,把这部分数据以内存流(MemoryStream)的形式,加上数据包包头一起交给NetworkComms.CompleteIncomingItemTask()方法进行处理. PacketBuilder