入门实战《深度学习技术图像处理入门》+《视觉SLAM十四讲从理论到实践》

学习图像识别处理,想在数据分析竞赛中取得较高的排名,看了《深度学习技术图像处理入门》电子书,一边看电子书一边做标记,对配套的代码也做了测试,收获颇多。

从机器学习、图像处理的基本概念入手,逐步阐述深度学习图像处理技术的基本原理以及简单的实现。

学习理论后做实验,使用卷积神经网络进行端到端学习,构建深度卷积神经网络,使用循环神经网络改进模型,评估模型,测试模型。最关键的是可以将模型运用于实战之中,将深度学习模型导入到工程中,数据类型转换函数,实施CAM可视化,这是我最需要的。

视觉和图形学真是一家,基础都一样!

正在看《视觉SLAM十四讲》电子书,代码很清晰!Particle Filtering,KF,EKF, Batch Optimization, Lie Group,ICP。IMU-SLAM和Semantic SLAM是AR的未来。

VO 关心的是相邻图像间的运动关系(图像特征提取与匹配)。后端主要是去噪(滤波和非线性优化)。回环检测主要解决随时间漂移问题(记忆)。Mapping 是构建地图(度量地图,拓扑地图)。

现在两本电子书同时看,做笔记,调试代码,学习图像处理、cv计算机视觉中常用的一些算法,这些方法有的简单,有的虽然比较复杂点,但是非常实用,一方面可以学会应用,另一方面可以写论文也有用。

整理收集的图像识别、计算机视觉方面的学习电子资料供大家可以学习参考:

https://www.yuque.com/baibinng/ctyewg/lyrsyg

学习积累,实战训练,每天都在进步!

原文地址:https://www.cnblogs.com/zhoulong2/p/12231692.html

时间: 2024-10-19 22:29:15

入门实战《深度学习技术图像处理入门》+《视觉SLAM十四讲从理论到实践》的相关文章

CV学习资料《卷积神经网络与视觉计算》+《深度学习实践计算机视觉》+《视觉SLAM十四讲从理论到实践》电子资料代码分析

视觉和图形学真是一家,基础都一样! 如果学习图像识别,计算机视觉,推荐电子书<视觉SLAM十四讲:从理论到实践>,系统介绍了视觉SLAM(同时定位与地图构建)所需的基本知识与核心算法,既包括数学理论基础,如三维空间的刚体运动.非线性优化,又包括计算机视觉的算法实现,例如多视图几何.回环检测等. 一个周读完了,代码很清晰!Particle Filtering,KF,EKF, Batch Optimization, Lie Group,ICP,LK光流... 尤其惊喜的是文末作者看好的IMU-SL

对比《Keras图像深度学习实战》PDF+《深度学习技术图像处理入门》PDF代码分析

将深度学习技术应用于图像处理,推荐阅读<深度学习技术图像处理入门>,基于理论讲解,由浅入深地引出若干个经典案例,讲解当前深度神经网络在图像处理领域的应用.提供了基于云GPU容器(Docker)的完整在线开发环境,方便初学者直接学习核心代码. <深度学习技术图像处理入门>以通俗易懂的语言简要讲解机器学习的核心概念,通过比较传统机器学习和深度神经网络的区别,引入深度神经网络的应用领域,将一个完整的深度神经网络的复杂结构拆成输入处理.模型元件以及模型优化三个子块,并详细说明如何将深度神经

浅读《视觉SLAM十四讲:从理论到实践》--操作1--初识SLAM

下载<视觉SLAM十四讲:从理论到实践>源码:https://github.com/gaoxiang12/slambook 第二讲:初识SLAM 2.4.2 Hello SLAM(书本P27) 1.从github上下载源码,并解压 Ubuntu上,解压zip,先找到zip文件所在位置,然后运行下面代码,进行解压. unzip slambook-master.zip 解压后,找到ch2文件夹,在文件夹中找到helloSLAM.cpp文件 运行cpp文件 g++ helloSLAM.cpp 如未安

《视觉slam十四讲》之第3讲-实践Eigen库

<视觉slam十四讲>之第3讲-实践Eigen库 Eigen库的安装 sudo apt-get install libeigen3-dev 注:Eigen是一个由纯头文件搭建的线性代数库,头文件安装路径为/usr/include/eigen3/. 实例1:Eigen的基础运算 #include <iostream> #include <ctime> #include <Eigen/Core> // Eigen 部分 #include <Eigen/De

《视觉slam十四讲》-第3讲-三维空间刚体运动

<视觉slam十四讲>-第3讲-三维空间刚体运动 原文地址:https://www.cnblogs.com/tangyuanjie/p/12606386.html

视觉slam十四讲ch5 joinMap.cpp 代码注释(笔记版)

1 #include <iostream> 2 #include <fstream> 3 using namespace std; 4 #include <opencv2/core/core.hpp> 5 #include <opencv2/highgui/highgui.hpp> 6 #include <Eigen/Geometry> 7 #include <boost/format.hpp> // for formating st

视觉slam十四讲ch6曲线拟合 代码注释(笔记版)

1 #include <opencv2/core/core.hpp> 2 #include <ceres/ceres.h> 3 #include <chrono> 4 5 using namespace std; 6 7 // 代价函数的计算模型 8 struct CURVE_FITTING_COST 9 { 10 CURVE_FITTING_COST ( double x, double y ) : _x ( x ), _y ( y ) {} 11 // 残差的计算

《视觉slam十四讲》之第3讲-三维刚体运动

第三讲:三维空间刚体运动 旋转的几种表达方式 向量 关于向量: 注:其中e1,e2,e3为线性空间下的一组基. 向量的内积: 注:向量的内积表示向量间的投影关系. 向量的外积 注:可以使用外积表示向量的旋转. 注:^ 记成一个反对称符号. 旋转矩阵 假设某个单位正交基(e1; e2; e3) ,经过一次欧式变换,变成了(e′ 1; e′ 2; e′ 3),对于同一个向量 a (注意该向量并没有随着坐标系的旋转而发生运动),它在两个坐标系下的坐标为 [a1; a2; a3]T 和 [a′ 1; a

视觉SLAM十四讲随笔

**************************************************************************************************************************************************ch1:clion的使用 断点设置之后,逐行执行 (Step Into) ( F7 ),逐函数执行 (Step Over) ( F8 ),注意0和O在clion中的显示区别,0是中间有个点的 O看起来像0,中