「CF1039D」You Are Given a Tree

传送门
Luogu

解题思路

整体二分。
的确是很难看出来,但是你可以发现输出的答案都是一些可以被看作是关键字处于 \([1, n]\) 的询问,而答案的范围又很显然是 \([0, n]\),这不就刚好满足了整体二分的几个组成部分了吗。  
那么我们要如何求出 \(mid\) 位置的解呢?  
考虑 \(\text{DP}\)
我们很显然可以将子树中的点尽可能合并后再向父亲传递,所以我们对每一次DP的根节点分别记一个子树中的最大值,和一个非严格次大值,然后我们尝试合并这两个值,要是合并不了,就给答案加一,不然就把最大值上传。
正确性和NOIP2018赛道修建有异曲同工之妙

细节注意事项

  • 咕咕咕

参考代码

#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <cctype>
#include <cmath>
#include <ctime>
#define rg register
using namespace std;
template < typename T > inline void read(T& s) {
    s = 0; int f = 0; char c = getchar();
    while (!isdigit(c)) f |= (c == '-'), c = getchar();
    while (isdigit(c)) s = s * 10 + (c ^ 48), c = getchar();
    s = f ? -s : s;
}

const int _ = 100000 + 2;

int tot, head[_], nxt[_ << 1], ver[_ << 1];
inline void Add_edge(int u, int v)
{ nxt[++tot] = head[u], head[u] = tot, ver[tot] = v; }

int n, ans[_], dp[_];

inline void dfs(int u, int f, int x) {
    dp[u] = 0;
    int mx = 0, mn = 0;
    for (rg int i = head[u]; i; i = nxt[i]) {
        int v = ver[i]; if (v == f) continue;
        dfs(v, u, x);
        if (dp[v] > mx) mn = mx, mx = dp[v];
        else mn = max(mn, dp[v]);
    }
    if (mx + mn + 1 >= x) dp[u] = 0, ++ans[x];
    else dp[u] = mx + 1;
}

inline void binary(int l, int r, int L, int R) {
    if (l > r || L > R) return ;
    if (L == R) {
        for (rg int i = l; i <= r; ++i) ans[i] = L; return ;
    }
    int mid = (l + r) >> 1;
    ans[mid] = 0, dfs(1, 0, mid);
    binary(l, mid - 1, ans[mid], R);
    binary(mid + 1, r, L, ans[mid]);
}

int main() {
#ifndef ONLINE_JUDGE
    freopen("in.in", "r", stdin);
#endif
    read(n);
    for (rg int u, v, i = 1; i < n; ++i)
        read(u), read(v), Add_edge(u, v), Add_edge(v, u);
    binary(1, n, 0, n);
    for (rg int i = 1; i <= n; ++i) printf("%d\n", ans[i]);
    return 0;
}

完结撒花 \(qwq\)

原文地址:https://www.cnblogs.com/zsbzsb/p/11746549.html

时间: 2024-10-06 19:25:50

「CF1039D」You Are Given a Tree的相关文章

「SPOJ1487」Query on a tree III

「SPOJ1487」Query on a tree III 传送门 把树的 \(\text{dfs}\) 序抠出来,子树的节点的编号位于一段连续区间,然后直接上建主席树区间第 \(k\) 大即可. 参考代码: #include <algorithm> #include <cstdio> #define rg register #define file(x) freopen(x".in", "r", stdin), freopen(x"

「SPOJ10707」Count on a tree II

「SPOJ10707」Count on a tree II 传送门 树上莫队板子题. 锻炼基础,没什么好说的. 参考代码: #include <algorithm> #include <cstdio> #include <cmath> #define rg register #define file(x) freopen(x".in", "r", stdin), freopen(x".out", "w

「luogu2633」Count on a tree

「luogu2633」Count on a tree 传送门 树上主席树板子. 每个节点的根从其父节点更新得到,查询的时候差分一下就好了. 参考代码: #include <algorithm> #include <cstdio> #define rg register #define file(x) freopen(x".in", "r", stdin), freopen(x".out", "w", s

LibreOJ #2016. 「SCOI2016」美味

二次联通门 : LibreOJ #2016. 「SCOI2016」美味 /* LibreOJ #2016. 「SCOI2016」美味 dalao们都在说这题如果没有加法balabala就可以用可持久化trie解决了 然而我连那个也不会啊QAQ 此题用主席树 从高位到低位贪心 能填1就填1,也就是查询一段区间有没有某个范围的数 (然而由乃dalao说可持久化线段树和可持久化trie是一个东西) */ #include <cstdio> #include <iostream> #inc

「一」创建一个带 ssh 服务的基础镜像(修订版)--使用「docker commit」创建

在介绍如何创建带 ssh 服务的基础镜像之前,我们想回顾一下之前介绍过的内容,其中提到有三种创建镜像的常用办法: 从文件系统导入 从现有容器使用「docker commit」提交 使用 dockerfile 文件 build 本章将主要介绍后面 2 种方法. 步骤如下: $ sudo docker run -ti ubuntu:14.04 /bin/bash #首先,使用我们最熟悉的 「-ti」参数来创建一个容器. [email protected]:/# sshd bash: sshd: co

Loj #3111. 「SDOI2019」染色

Loj #3111. 「SDOI2019」染色 题目描述 给定 \(2 \times n\) 的格点图.其中一些结点有着已知的颜色,其余的结点还没有被染色.一个合法的染色方案不允许相邻结点有相同的染色. 现在一共有 \(c\) 种不同的颜色,依次记为 \(1\) 到 \(c\).请问有多少对未染色结点的合法染色方案? 输入格式 第一行有两个整数 \(n\) 和 \(c\),分别描述了格点图的大小和总的颜色个数. 之后两行,每行有 \(n\) 个整数:如果是 \(0\) 则表示对应结点未被染色,否

「SCOI2012」喵星球上的点名

「SCOI2012」喵星球上的点名 填一个很久以前用 \(\texttt{AC}\) 自动机没填上的坑. 关于本题,能够通过本题的算法很多,这里作者采用的是后缀数组+树状数组的做法. 首先有一个显然的结论:若 \(s_2\) 是 \(s_1\) 的子串,则 \(s_1\) 一定存在一个后缀与 \(s_2\) 的最长公共前缀为 \(|s_2|\). 我们将读入的姓.名.询问串连成一个整体,形成一个字符串 \(s\),且在每一个姓.名.询问串中插入一个不存在文本中的字符,且保证询问串后插入的比姓名串

AC日记——「HNOI2017」单旋 LiBreOJ 2018

#2018. 「HNOI2017」单旋 思路: set+线段树: 代码: #include <bits/stdc++.h> using namespace std; #define maxn 100005 #define maxtree maxn<<2 int val[maxtree],tag[maxtree],L[maxtree],R[maxtree],mid[maxtree]; int op[maxn],ki[maxn],bi[maxn],cnt,size,n,ch[maxn]

「随笔」基于当下的思考

马德,说好的技术blog,变成日记本了... 下午的时候莫名其妙的感到很颓废,因为自己的不够强大感到忧虑和危机感十足.现在每每行走在技术的道路上,常觉得如履薄冰,如芒在背. 上大学之前和现在的心态其实差别挺大的,视野的开阔远远不止局限于自己的脚下.不过,这里的「上大学之前」只是一个时间描述词,并不觉得大学是最适合学习的地方,我很失望. 世界上的人无论性别,区域,宗教,兴趣爱好,总可以在互联网上找到志趣相同的人,总是可以不断打破自己的常识与惯性思维.总是有在相同领域比自己更强的人,挺好的. 关于知