二叉排序树java实现
二叉树排序树是什么?
二叉排序树(Binary Sort Tree)又称二叉查找树、二叉搜索树。 它或者是一棵空树;或者是具有下列性质的二叉树:
- 若左子树不空,则左子树上所有结点的值均小于它的根结点的值;
- 若右子树不空,则右子树上所有结点的值均大于它的根结点的值;
- 左、右子树也分别为二叉排序树;
二叉排序树节点的定义
package tree;
public class TreeNode {
private int data;//数据
private TreeNode left;//左子树节点
private TreeNode right;//右子树节点
public TreeNode(int data, TreeNode left, TreeNode right) {
super();
this.data = data;
this.left = left;
this.right = right;
}
public TreeNode(int data) {
super();
this.data = data;
}
public int getData() {
return data;
}
public void setData(int data) {
this.data = data;
}
public TreeNode getLeft() {
return left;
}
public void setLeft(TreeNode left) {
this.left = left;
}
public TreeNode getRight() {
return right;
}
public void setRight(TreeNode right) {
this.right = right;
}
@Override
public String toString() {
return "TreeNode [data=" + data+"]";
}
}
二叉排序树类实现
package tree;
import java.util.Deque;
import java.util.LinkedList;
import java.util.Queue;
public class BinaryTree {
private TreeNode root;
public BinaryTree() {
super();
// TODO Auto-generated constructor stub
}
public BinaryTree(TreeNode root) {
super();
this.root = root;
}
public TreeNode getRoot() {
return root;
}
public void setRoot(TreeNode root) {
this.root = root;
}
// 前序遍历
public static void pre_visit(TreeNode root) {
System.out.println(root);
if (root.getLeft() != null)
{
pre_visit(root.getLeft());
}
if (root.getRight() != null)
{
pre_visit(root.getRight());
}
}
// 中序遍历
public static void infix_visit(TreeNode root) {
if (root != null)
{
if (root.getLeft() != null)
{
infix_visit(root.getLeft());
}
System.out.println(root);
if (root.getRight() != null)
{
infix_visit(root.getRight());
}
}
}
// 后续遍历
public static void post_visit(TreeNode root) {
if (root != null)
{
if (root.getLeft() != null)
{
post_visit(root.getLeft());
}
if (root.getRight() != null)
{
post_visit(root.getRight());
}
System.out.println(root);
}
}
// 前序查找
public static TreeNode preFind(TreeNode root, int data) {
if (root != null)
{
if (root.getData() == data)
{
return root;
}
TreeNode temp = null;
if (root.getLeft() != null)
{
temp = preFind(root.getLeft(), data);
}
if (temp != null)
{
return temp;
}
if (root.getRight() != null)
{
temp = preFind(root.getRight(), data);
}
return temp;
} else
{
return null;
}
}
// 中序查找
public static TreeNode infixFind(TreeNode root, int data) {
if (root != null)
{
TreeNode temp = null;
if (root.getLeft() != null)
{
temp = infixFind(root.getLeft(), data);
}
if (temp != null)
{
return temp;
}
if (root.getData() == data)
{
return root;
}
if (root.getRight() != null)
{
temp = infixFind(root.getRight(), data);
}
return temp;
} else
{
return null;
}
}
// 后序查找
public static TreeNode postFind(TreeNode root, int data) {
if (root != null)
{
TreeNode temp = null;
if (root.getLeft() != null)
{
temp = postFind(root.getLeft(), data);
}
if (temp != null)
{
return temp;
}
if (root.getRight() != null)
{
temp = postFind(root.getRight(), data);
}
if (temp != null)
{
return temp;
}
if (root.getData() == data)
{
return root;
}
return temp;
} else
{
return null;
}
}
// 查找数据,按照二叉排序树的情况
public TreeNode findByOrder(int key) {
TreeNode temp = this.root;
while (temp != null)
{
if (temp.getData() > key)
{
temp = temp.getLeft();
} else if (temp.getData() < key)
{
temp = temp.getRight();
} else
{
return temp;
}
}
return null;
}
// 按照二叉排序树进行插入
public boolean insertByOrder(int data) {
TreeNode newNode = new TreeNode(data);
if (root == null)
{// 当前树为空树,没有任何节点
root = newNode;
return true;
} else
{
TreeNode current = root;
TreeNode parentNode = null;
while (current != null)
{
parentNode = current;
if (current.getData() > data)
{// 当前值比插入值大,搜索左子节点
current = current.getLeft();
if (current == null)
{// 左子节点为空,直接将新值插入到该节点
parentNode.setLeft(newNode);
;
return true;
}
} else
{
current = current.getRight();
if (current == null)
{// 右子节点为空,直接将新值插入到该节点
parentNode.setRight(newNode);
return true;
}
}
}
}
return false;
}
// 查找二叉树的最大值
public TreeNode findMax() {
TreeNode cur = this.root;
TreeNode max = this.root;
while (cur != null)
{
max = cur;
cur = cur.getRight();
}
return max;
}
// 查找二叉树的最小值
public TreeNode findMin() {
TreeNode cur = this.root;
TreeNode min = this.root;
while (cur != null)
{
min = cur;
cur = cur.getLeft();
}
return min;
}
// 求二叉树的高度
public static int getTreeHigh(TreeNode root) {
if (root == null)
{
return 0;
} else
{
return Math.max(getTreeHigh(root.getLeft()), getTreeHigh(root.getRight())) + 1;
}
}
// 返回二叉树节点的数量
public static int getSize(TreeNode root) {
if (root == null)
{
return 0;
} else
{
return getSize(root.getLeft()) + getSize(root.getRight()) + 1;
}
}
// 返回叶子节点的数量
public static int getLeafSize(TreeNode root) {
if (root == null)//如果根节点为空0
{
return 0;
}
if (root.getLeft() == null && root.getRight() == null)//如果是叶子节点不存在左右子树
{
return 1;
}
return getLeafSize(root.getLeft()) + getLeafSize(root.getRight());//左子树的叶子+右子树叶子的数量
}
// 销毁二叉树
public static void destoryTree(TreeNode root) {
while (root != null) {//当根节点不空
TreeNode left = root.getLeft();
if (left == null) {//如果左子树为空
TreeNode right = root.getRight();//获取右子树
root.setRight(null);//删除根节点
root = right;//根节点指向右子树
} else {
root.setRight(left.getLeft());//根节点的右儿子指向左子树
left.setRight(root);//左子树的右子树指向根节点
root = left;//根节点指向左子树
}
}
}
// 删除二叉树节点
// root是根节点
// key是待删除的节点的值
// 返回根节点
public static TreeNode deleteTreeNode(TreeNode root, int key) {
if (root == null)
{
return null;
}
if (key < root.getData())
{// 向左子树进行删除
root.setLeft(deleteTreeNode(root.getLeft(), key));
return root;
}
if (key > root.getData())
{
root.setRight(deleteTreeNode(root.getRight(), key));
return root;
}
// 开始删除,如果是叶子节点
if (root.getLeft() == null && root.getRight() == null)
{
root = null;
return root;
}
// 待删除节点只有右子树
if (root.getLeft() == null && root.getRight() != null)
{
root = root.getRight();
return root;
}
// 只有左子树
if (root.getRight() == null && root.getLeft() != null)
{
root = root.getLeft();
return root;
}
// 有两个孩子
if (root.getLeft() != null && root.getRight() != null)
{
// 挑选左子树中最大或者右子树中最小的,替换当前节点,再将替换节点置空
int val = findMaxInLeftTree(root.getLeft());
root.setData(val);
root.setLeft(deleteTreeNode(root.getLeft(), key));
return root;
}
return root;
}
// 找到左子树中最大的节点的值
private static int findMaxInLeftTree(TreeNode left) {
if (left == null)
{
return 0;
}
if (left.getRight() == null)
{
return left.getData();
}
if (left.getRight() == null && left.getLeft() == null)
{
return left.getData();
}
return findMaxInLeftTree(left.getRight());
}
// 层序打印二叉树
public static void printTree(TreeNode root) {
if (root == null)
{
return;
}
Deque<TreeNode> prioriDeque = new LinkedList<TreeNode>();
prioriDeque.offerLast(root);
while (prioriDeque.size() != 0)
{
TreeNode pNode = prioriDeque.getFirst();
prioriDeque.pollFirst();
System.out.printf(pNode.getData() + "" + " ");
if (pNode.getLeft() != null)
{
prioriDeque.push(pNode.getLeft());
}
if (pNode.getRight() != null)
{
prioriDeque.push(pNode.getRight());
}
}
}
// 按层打印二叉树
public static void printTreeBylayer(TreeNode root) {
if (root == null)
{
return;
}
Queue<TreeNode> queue = new LinkedList<TreeNode>();
int current;// 当前层
int next;// 下一层的节点个数
queue.offer(root);
current = 1;
next = 0;
while (!queue.isEmpty())
{
TreeNode currentNode = queue.poll();
System.out.printf("%-4d", currentNode.getData());
current--;
if (currentNode.getLeft() != null)
{
queue.offer(currentNode.getLeft());
next++;
}
if (currentNode.getRight() != null)
{
queue.offer(currentNode.getRight());
next++;
}
if (current == 0)
{
System.out.println();
current = next;
next = 0;
}
}
}
// 可视化打印
public static void printBinaryTree(TreeNode root, int level) {
if (root == null)
return;
printBinaryTree(root.getRight(), level + 1);
if (level != 0)
{
for (int i = 0; i < level - 1; i++)
System.out.print("|\t");
System.out.println("|-------" + root.getData());
} else
System.out.println(root.getData());
printBinaryTree(root.getLeft(), level + 1);
}
// 二叉树的二分查找
public static TreeNode binarySearch(TreeNode root, int key) {
if (root == null)
{
return null;
}
if (root != null)
{
if (root.getData() == key)
{
return root;
} else if (root.getData() > key)
{
return binarySearch(root.getLeft(), key);
} else
{
return binarySearch(root.getRight(), key);
}
}
return null;
}
// 二叉树的反转
public static void mirror(TreeNode root) {
if (root == null)
{
return;
}
if (root.getLeft() == null && root.getRight() == null)
{
return;
}
TreeNode temp = root.getLeft();
root.setLeft(root.getRight());
root.setRight(temp);
mirror(root.getLeft());
mirror(root.getRight());
}
}
原文地址:https://www.cnblogs.com/mengxiaoleng/p/12207405.html
时间: 2024-10-12 12:18:19