概率密度估计介绍


title: 概率密度估计介绍
tags: 概率密度,密度估计
grammar_cjkRuby: true
grammar_flow: true
grammar_sequence: true

在学概率论时,常常会看到各种稀奇古怪的名字,有的书上只介绍了该如何求解,但是从不介绍为什么这么叫以及有什么用,本文就介绍一下概率密度估计是什么以及是干什么用的,主要参考Jason BrownLee大神的一篇博文进行介绍。

原文地址: A Gentle Introduction to Probability Density Estimation

后面部分名词会以英文缩写形式介绍,汇总如下:

  • 概率密度 (probability dense, PD)
  • 概率密度函数 (probability dense function, PDF)
  • 概率密度估计 (probability dense estimation, PDE)

PD&PDF&PDE之间的关系

一句话概括概率密度就是:

概率密度是观测值与其概率之间的关系

一个随机变量的某个结果可能会以很低的概率出现,而其他的结果可能概率会比较高。

概率密度的总体形状被称为概率分布 (probability distribution),对随机变量特定结果的概率计算是通过概率密度函数来完成的,简称为PDF (Probability Dense Function)

那么概率密度函数有什么用呢?很有用!例如我们可以通过PDF来判断一个样本的可信度高低,进而判断这个样本是否是异常值。另外有时我们需要输入数据需要服从某个分布也需要用到PDF。

但是通常我们是不知道一个随机变量的PDF的,而我们不断逼近这个PDF的过程就是概率密度估计

graph LR
A[概率密度函数] -->|描述| B(概率密度)
C[概率密度估计] -->|估计| A(概率密度函数)

MARSGGBO?原创

如有意合作,欢迎私戳

邮箱:[email protected]

2019-12-29 09:51:01

原文地址:https://www.cnblogs.com/marsggbo/p/12114284.html

时间: 2024-10-12 10:58:30

概率密度估计介绍的相关文章

概率密度估计简介

1.概率密度函数 在分类器设计过程中(尤其是贝叶斯分类器),需要在类的先验概率和类条件概率密度均已知的情况下,按照一定的决策规则确定判别函数和决策面.但是,在实际应用中,类条件概率密度通常是未知的.那么,当先验概率和类条件概率密度都未知或者其中之一未知的情况下,该如何来进行类别判断呢?其实,只要我们能收集到一定数量的样本,根据统计学的知识,可以从样本集来推断总体概率分布.这种估计方法,通常称之为概率密度估计.它是机器学习的基本问题之一,其目的是根据训练样本来确定x(随机变量总体)的概率分布.密度

机器学习中的概率模型和概率密度估计方法及VAE生成式模型详解之一(简介)

A Gentle Introduction to Probabilistic Modeling and Density Estimation in Machine Learning And A Detailed Explanation of Variational Auto-Encoder by Jiyang Wang [email protected] Github.com/2wavetech 简介 非监督机器学习(Unsupervised Machine Learning)中的数据分布密度估

模式识别(Pattern Recognition)学习笔记(六)——概率密度函数的非参估计

上篇学习了PDF的参数估计方法,主要有最大似然估计和贝叶斯估计,他们主要对有确定形式的PDF进行参数估计,而在实际情况下,并不能知道PDF的确切形式,只能通过利用所有样本对整个PDF进行估计,而且这种估计只能是利用数值方法求解.通俗的说,如果参数估计是从指定的某一类函数中选择一个作为目标估计,那么非参数估计就是从所有可能的函数中找到一个合适的选择. 非参数估计主要有三种方法:直方图法.kn近邻法.核函数法,其中核函数法又叫Parzen窗法或核密度法. 1.直方图法 这是一种最简单也最直观的一种非

OCR技术浅探:特征提取(1)

作为OCR系统的第一步,特征提取是希望找出图像中候选的文字区域特征,以便我们在第二步 进行文字定位和第三步进行识别.在这部分内容中,我们集中精力模仿肉眼对图像与汉字的处理过程,在图像的处理和汉字的定位方面走了一条创新的道路.这部分工作是整个OCR系统最核心的部分,也是我们工作中最核心的部分. 传统的文本分割思路大多数是"边缘检测 + 腐蚀膨胀 + 联通区域检测",如论文[1]. 然而,在复杂背景的图像下进行边缘检测会导致背景部分的边缘过多(即噪音增加),同时文字部分的边缘 信息则容易被

模式分类 绪论

姗姗来迟的文章,依旧是老风格,先来几句废话,现在工作比较忙,也成功的转型到了本行,不用忍受各种"xx领导对你很不满意"这种恶心人的话了,可以安静的,专心的做的我的非主流科学家. 做技术的人,我们对自己的技术水平必须有一个客观的认识,不管现在什么职位,多少收入,这只能从另一个角度佐证一个人的能力,但距离自己心中的水平差多少,只有自己能评估出来,有差距,就去学,去做,去思考. 废话完毕. 本系列博客内容为对<模式分类>学习的总结和问题讨论,如有纰漏或错误,请各位留言指正,谢谢.

对线性回归、逻辑回归、各种回归的概念学习

http://blog.csdn.net/viewcode/article/details/8794401 回归问题的条件/前提: 1) 收集的数据 2) 假设的模型,即一个函数,这个函数里含有未知的参数,通过学习,可以估计出参数.然后利用这个模型去预测/分类新的数据. 1. 线性回归 假设 特征 和 结果 都满足线性.即不大于一次方.这个是针对 收集的数据而言.收集的数据中,每一个分量,就可以看做一个特征数据.每个特征至少对应一个未知的参数.这样就形成了一个线性模型函数,向量表示形式: 这个就

SVM(支持向量机)与统计机器学习 &amp; 也说一下KNN算法

因为SVM和统计机器学习内容很多,所以从 http://www.cnblogs.com/charlesblc/p/6188562.html 这篇文章里面分出来,单独写. 为什么说SVM和统计学关系很大. 看统计学的定义:统计学是通过搜索.整理.分析.描述数据等手段,以达到推断所测对象的本质,甚至预测对象未来的一门综合性科学. 通过有限的样本,来预测更多的泛化空间的效果,本身就是机器学习的奋斗目标. 而SVM又是基于统计学理论的基础: 基于数据的机器学习是现代智能技术中的重要方面, 研究从观测数据

【文智背后的奥秘】系列篇——情感分类

版权声明:本文由文智原创文章,转载请注明出处: 文章原文链接:https://www.qcloud.com/community/article/92 来源:腾云阁 https://www.qcloud.com/community 情感分类是对带有感情色彩的主观性文本进行分析.推理的过程,即分析对说话人的态度,倾向正面,还是反面.它与传统的文本主题分类又不相同,传统主题分类是分析文本讨论的客观内容,而情感分类是要从文本中得到它是否支持某种观点的信息.比如,"日媒:认为歼-31能够抗衡F-35,这种

【转】 视觉跟踪综述

目标跟踪是绝大多数视觉系统中不可或缺的环节.在二维视频跟踪算法中,基于目标颜色信息或基于目标运动信息等方法是常用的跟踪方法.从以往的研究中我们发现,大多数普通摄像头(彩色摄像头)下非基于背景建模的跟踪算法都极易受光照条件的影响.这是因为颜色变化在某种程度上是光学的色彩变化造成的.如基于体素和图像像素守恒假设的光流算法它也是假设一个物体的颜色在前后两帧没有巨大而明显的变化. 但在特定的场景应用中(如视频监控等领域),不失有一些经典的跟踪算法可以实现较好的跟踪效果.以下主要介绍三种经典的跟踪算法:C