title: 概率密度估计介绍
tags: 概率密度,密度估计
grammar_cjkRuby: true
grammar_flow: true
grammar_sequence: true
在学概率论时,常常会看到各种稀奇古怪的名字,有的书上只介绍了该如何求解,但是从不介绍为什么这么叫以及有什么用,本文就介绍一下概率密度估计是什么以及是干什么用的,主要参考Jason BrownLee大神的一篇博文进行介绍。
原文地址: A Gentle Introduction to Probability Density Estimation
后面部分名词会以英文缩写形式介绍,汇总如下:
- 概率密度 (probability dense, PD)
- 概率密度函数 (probability dense function, PDF)
- 概率密度估计 (probability dense estimation, PDE)
PD&PDF&PDE之间的关系
一句话概括概率密度就是:
概率密度是观测值与其概率之间的关系
一个随机变量的某个结果可能会以很低的概率出现,而其他的结果可能概率会比较高。
概率密度的总体形状被称为概率分布 (probability distribution),对随机变量特定结果的概率计算是通过概率密度函数来完成的,简称为PDF (Probability Dense Function)。
那么概率密度函数有什么用呢?很有用!例如我们可以通过PDF来判断一个样本的可信度高低,进而判断这个样本是否是异常值。另外有时我们需要输入数据需要服从某个分布也需要用到PDF。
但是通常我们是不知道一个随机变量的PDF的,而我们不断逼近这个PDF的过程就是概率密度估计。
graph LR
A[概率密度函数] -->|描述| B(概率密度)
C[概率密度估计] -->|估计| A(概率密度函数)
原文地址:https://www.cnblogs.com/marsggbo/p/12114284.html
时间: 2024-10-12 10:58:30