通过案例对SparkStreaming透彻理解之二

本期内容:

1 解密Spark Streaming运行机制

2 解密Spark Streaming架构

  一切不能进行实时流处理的数据都是无效的数据。在流处理时代,SparkStreaming有着强大吸引力,而且发展前景广阔,加之Spark的生态系统,Streaming可以方便调用其他的诸如SQL,MLlib等强大框架,它必将一统天下。

  Spark Streaming运行时与其说是Spark Core上的一个流式处理框架,不如说是Spark Core上的一个最复杂的应用程序。如果可以掌握Spark streaming这个复杂的应用程序,那么其他的再复杂的应用程序都不在话下了。这里选择Spark Streaming作为版本定制的切入点也是大势所趋。

  我 们知道Spark Core处理的每一步都是基于RDD的,RDD之间有依赖关系。上图中的RDD的DAG显示的是有3个Action,会触发3个job,RDD自下向上依 赖,RDD产生job就会具体的执行。从DSteam Graph中可以看到,DStream的逻辑与RDD基本一致,它就是在RDD的基础上加上了时间的依赖。RDD的DAG又可以叫空间维度,也就是说整个 Spark Streaming多了一个时间维度,也可以成为时空维度。

  从这个角度来讲,可以将Spark Streaming放在坐标系中。其中Y轴就是对RDD的操作,RDD的依赖关系构成了整个job的逻辑,而X轴就是时间。随着时间的流逝,固定的时间间 隔(Batch Interval)就会生成一个job实例,进而在集群中运行。

  对于Spark Streaming来说,当不同的数据来源的数据流进来的时候,基于固定的时间间隔,会形成一系列固定不变的数据集或event集合(例如来自flume 和kafka)。而这正好与RDD基于固定的数据集不谋而合,事实上,由DStream基于固定的时间间隔行程的RDD Graph正是基于某一个batch的数据集的。

  从上图中可以看出,在每一个batch上,空间维度的RDD依赖关系都是一样 的,不同的是这个五个batch流入的数据规模和内容不一样,所以说生成的是不同的RDD依赖关系的实例,所以说RDD的Graph脱胎于DStream 的Graph,也就是说DStream就是RDD的模版,不同的时间间隔,生成不同的RDD Graph实例。

  从Spark Streaming本身出发:

  1.需要RDD DAG的生成模版:DStream Graph

  2需要基于Timeline的job控制器

  3需要inputStreamings和outputStreamings,代表数据的输入和输出

  4具体的job运行在Spark Cluster之上,由于streaming不管集群是否可以消化掉,此时系统容错就至关重要

  5事务处理,我们希望流进来的数据一定会被处理,而且只处理一次。在处理出现崩溃的情况下如何保证Exactly once的事务语意。

  从源码解读DStream

  从这里可以看出,DStream就是Spark Streaming的核心,就想Spark Core的核心是RDD,它也有dependency和compute。更为关键的是下面的代码:

这是一个HashMap,以时间为key,以RDD为value,这也正应证了随着时间流逝,不断的生成RDD,产生依赖关系的job,并通过jobScheduler在集群上运行。再次验证了DStream就是RDD的模版。

  DStream可以说是逻辑级别的,RDD就是物理级别的,DStream所表达的最终都是通过RDD的转化实现的。前者是更高级别的抽象,后者是底层的实现。DStream实际上就是在时间维度上对RDD集合的封装,DStream与RDD的关系就是随着时间流逝不断的产生RDD,对DStream的操作就是在固定时间上操作RDD。

  

  总结:

  
空间维度上的业务逻辑作用于DStream,随着时间的流逝,每个Batch
Interval形成了具体的数据集,产生了RDD,对RDD进行transform操作,进而形成了RDD的依赖关系RDD
DAG,形成job。然后jobScheduler根据时间调度,基于RDD的依赖关系,把作业发布到Spark
Cluster上去运行,不断的产生Spark作业。

时间: 2024-11-06 23:14:28

通过案例对SparkStreaming透彻理解之二的相关文章

Spark版本定制第2天:通过案例对SparkStreaming透彻理解之二

本期内容: 1 解密Spark Streaming运行机制 2 解密Spark Streaming架构 一切不能进行实时流处理的数据都是无效的数据.在流处理时代,SparkStreaming有着强大吸引力,而且发展前景广阔,加之Spark的生态系统,Streaming可以方便调用其他的诸如SQL,MLlib等强大框架,它必将一统天下. Spark Streaming运行时与其说是Spark Core上的一个流式处理框架,不如说是Spark Core上的一个最复杂的应用程序.如果可以掌握Spark

(版本定制)第2课:通过案例对SparkStreaming透彻理解之二

本期内容: 1 解密Spark Streaming运行机制 2 解密Spark Streaming架构 一切不能进行实时流处理的数据都是无效的数据.在流处理时代,SparkStreaming有着强大吸引力,而且发展前景广阔,加之Spark的生态系统,Streaming可以方便调用其他的诸如SQL,MLlib等强大框架,它必将一统天下. Spark Streaming运行时与其说是Spark Core上的一个流式处理框架,不如说是Spark Core上的一个最复杂的应用程序.如果可以掌握Spark

Spark源码定制第一课:通过案例对SparkStreaming透彻理解三板斧之一

第一课:通过案例对SparkStreaming透彻理解三板斧之一:解密SparkStreaming另类实验及SparkStreaming本质解析 本期导读: 1 Spark源码定制选择从SparkStreaming入手: 2 Spark Streaming另类在线实验: 3 瞬间理解SparkStreaming本质. 1.    从Spark Streaming入手开始Spark源码版本定制之路 1.1           从Spark Streaming入手Spark源码版本定制之路的理由 从

Spark发行版笔记1:通过案例对SparkStreaming透彻理解三板斧之一

本节课通过二个部分阐述SparkStreaming的理解: 一.解密SparkStreaming另类在线实验 二.瞬间理解SparkStreaming本质 Spark源码定制班主要是自己做发行版.自己动手改进Spark源码,通常在电信.金融.教育.医疗.互联网等领域都有自己不同的业务,如果Sprak官方版本没有你需要的业务功能,你自己可以定制.扩展Spark的功能,满足公司的业务需要. 选择SparkStreaming框架源码研究.二次开发的原因 1.Spark起初只有Spark Core基础框

Spark定制版1:通过案例对SparkStreaming透彻理解三板斧之一

本节课通过二个部分阐述SparkStreaming的理解: 一.解密SparkStreaming另类在线实验 二.瞬间理解SparkStreaming本质 Spark源码定制,自己动手改进Spark源码,通常在电信.金融.教育.医疗.互联网等领域都有自己不同的业务,如果Sprak官方版本没有你需要的业务功能,你自己可以定制.扩展Spark的功能,满足公司的业务需要. 选择SparkStreaming框架源码研究.二次开发的原因 1.Spark起初只有Spark Core基础框架没有其他的子框架(

通过案例对SparkStreaming透彻理解三板斧之一

I.Spark Streaming另类在线实验 II.瞬间理解Spark Streaming本质 扩展Spark的内容来适合自己的业务模型,自己能够进行框架的维护,就好比你拿到一个开源源代码,即使你编译引用库,那么你后期的维护和后期的扩展都会受到极大的限制,如果你自己依据于Spark的源码进行改造,那么自己后期的维护和扩展都是依赖于自己的设计来适合公司的业务逻辑,从而方便维护和可扩展 Spark Streaming本来就是Spark Core中的一个子框架,为什么选Spark Streaming

Spark定制版2:通过案例对SparkStreaming透彻理解三板斧之二

本节课主要从以下二个方面来解密SparkStreaming: 一.解密SparkStreaming运行机制 二.解密SparkStreaming架构 SparkStreaming运行时更像SparkCore上的应用程序,SparkStreaming程序启动后会启动很多job,每个batchIntval.windowByKey的job.框架运行启动的job.例如,Receiver启动时也启动了job,此job为其他job服务,所以需要做复杂的spark程序,往往多个job之间互相配合.SparkS

Spark版本定制:通过案例对SparkStreaming透彻理解三板斧之二:解密SparkStreaming运行机制和架构

本期内容: 1.解密Spark Streaming运行机制 2.解密Spark Streaming架构 上期回顾: 1.技术界的寻龙点穴,每个领域都有自己的龙脉,Spark就是大数据界的龙脉,Spark Streaming就是Spark的龙血: 2.采用了降维(把时间Batch Interval放大)的方式,进行案例演示实战,得到的结论是:特定的时间内是RDD在执行具体的Job: 一.解密Spark Streaming运行机制和架构 运行机制概念:       Spark Streaming运行

第2课:通过案例对SparkStreaming 透彻理解三板斧之二:解密SparkStreaming运行机制和架构

本篇博文将从以下几点组织文章: 1. 解密Spark Streaming运行机制 2. 解密Spark Streaming架构 一:解密Spark Streaming运行机制 1. DAG生成模板 :DStreamGraph a) Spark Streaming中不断的有数据流进来,他会把数据积攒起来,积攒的依据是以Batch Interval的方式进行积攒的,例如1秒钟,但是这1秒钟里面会有很多的数据例如event,event就构成了一个数据的集合,而RDD处理的时候,是基于固定不变的集合产生