STL的map容器将第3个模板参数设为less_equal或greater_equal会怎样?

最近都在学Linux系统编程,用C就足矣,有段时间没碰C++了,于是实现些算法练手。

实现多项式乘法的时候发现有几项没有合并同类项,最终调试到这一步时发现了问题。

res是map类型,用find查找key为1991的key-value时,结果得到的却是<12,1>的key-value。

于是转去看那段代码,发现了问题。因为map默认是升序排列,我最后需要打印的多项式是按照幂次数(即这里res的key)降序排列,所以我需要设置map的第3个模板参数,但是由于代码补全我没确认就选择了。

map<int, int, std::greater_equal<int>> res;

我的本意是用std::greater<int>,结果补全的时候没仔细看,补全成了greater_equal<int>,也就是大于或等于。

C++的map的常见实现是内部维护了一颗红黑树(二叉平衡树)从而得到按照key的大小排列的key-value,因为二叉平衡树默认是左子节点<父节点<右子节点,而怎么比较节点之间的大小则是个问题,因为节点可以是类而不是基本数据类型(int、double等等),于是就有了map第3个模板参数,默认是less<>,也就是对基本数据类型来说是,而对类(设为Object)来说则是它的bool operator < (const Object&) const方法。

所以关键是对象之间的operator < 的定义。类似地,在进行find()等需要查找的操作时,取决于对象之间的operator == 的定义

gdb跟踪find()函数的运行过程到达关键代码

2288      template<typename _Key, typename _Val, typename _KeyOfValue,
2289               typename _Compare, typename _Alloc>
2290        typename _Rb_tree<_Key, _Val, _KeyOfValue,
2291                  _Compare, _Alloc>::iterator
2292        _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
2293        find(const _Key& __k)
2294        {
2295          iterator __j = _M_lower_bound(_M_begin(), _M_end(), __k);
2296          return (__j == end()
(gdb)
2297              || _M_impl._M_key_compare(__k,
2298                        _S_key(__j._M_node))) ? end() : __j;
2299        }

含义很好理解,通过_M_lower_bound函数返回迭代器__j,然后若__j为end()或者对__k(插入节点)和__j(下界节点)的节点值的比较为真,则返回end(),否则返回__j。_M_key_compare即我们传入map的第三个模板参数,后面记为operator < (),对int默认定义是:less<int>,即符合以下规则

operator < (1,2):真;operator < (1,1):假;operator < (1,0):假。

_M_lower_bound可以参照STL算法lower_bound的定义(http://www.cplusplus.com/reference/algorithm/lower_bound/)

Returns an iterator pointing to the first element in the range [first,last) which does not compare less than val.

返回按照operator<()排好的升序数组中第1个不小于val的数,也就是第1个operator < (数组元素,待查找值)为假的数,示例如下:

【case 1】数组:1 2 4 5;查找:3。   1<3:真;2<3:真;4<3:假。 ——返回4,对应:查找失败

【case 2】数组:1 2 3 5;查找:3。   1<3:真;2<3:真;3<3:假。 ——返回3,对应:查找成功

回顾刚才的代码,我们可以看到_M_impl._M_key_compare(__k, _S_key(__j._M_node))的意义在哪

operator < (查找值,lower_bound的返回值)为真对应的是上面的case 1,也就是查找失败,find()查找失败会返回end()

回到map上来,也就是说,map调用find()方法不需要operator==的定义,只需要operator<的定义即可。

那么假如operator<被定义为less_equal而不是less呢?

case 1不变,我们重新考虑上面的case 2:1<3:真;2<3:真;3<3:真;5<3:假,返回5。

——等等,3<3为什么为真?注意,此时的<已经不是数学意义上的小于(<)了,而是调用了operator<(),operator<()被赋予数学意义上的小于或等于(<=)的意义,那么3<3的结果就等同于数学意义上的3<=3。

也就是说,模板参数设为less_equal时,lower_bound永远不会返回和查找值一样的值,也就是说,find()函数永远不会返回end(),即查找失败。

(greater_equal和less_equal类似,只不过升序改成降序)

最后给个测试程序来证明我的结论

#include <iostream>
#include <map>
#include <functional>
using namespace std;

int main()
{
    map<int, int, greater_equal<int>> m;
    int key = 250;
    m.emplace(key, 0);

    for (int val = 100; val < 120; val++)
    {
        // 若m中不存在key则将<key,val>添加进去
        if (m.find(key) == m.end())
            m.emplace(key, val);
    }

    // 显示map的数据
    for (auto& x : m)
        cout << x.first << "=>" << x.second << endl;

    return 0;
}
$ g++ test.cpp -std=c++11
$ ./a.out
250=>119
250=>118
250=>117
250=>116
250=>115
250=>114
250=>113
250=>112
250=>111
250=>110
250=>109
250=>108
250=>107
250=>106
250=>105
250=>104
250=>103
250=>102
250=>101
250=>100
250=>0

map中一个key对应尽可能多个value,这就是使用less_equal或greater_equal作为map第3个模板参数的下场了

时间: 2024-10-21 13:47:37

STL的map容器将第3个模板参数设为less_equal或greater_equal会怎样?的相关文章

STL之map容器的详解

一.关于map的介绍 map是STL的 一个容器,和set一样,map也是一种关联式容器.它提供一对一(其中第一个可以称为关键字,每个关键字只能在map中出现一次,第二个可能称为该关键 字的值)的数据处理能力,由于这个特性,有助于我们处理一对一数据.这里说下map内部数据的组织,map内部是自建一颗红黑树(一种非严格意义上的平衡二叉树),这颗树具有对数据自动排序的功能,所以在map内部所有的数据都是有序的.学习map我们一定要理解什么是一对一的数据映射?比如:一个班级中,每个学生的学号跟他的姓名

STL中map容器使用自定义key类型报错详解

引言 STL的map容器中,key的类型是不是随意的呢? 实践 编写测试代码 定义一个结构体来试试: struct a { char* pName; int m_a; }; map<a, int> mp; a a1; a1.m_a = 100; a1.pName = "a1"; a a2; a2.m_a = 200; a2.pName = "a2"; mp.insert(std::make_pair(a1, 1)); mp.insert(std::mak

stl之map容器的原理及应用

容器的数据结构同样是采用红黑树进行管理,插入的元素健位不允许重复,所使用的节点元素的比较函数,只对元素的健值进行比较,元素的各项数据可通过健值检索出来.map容器是一种关联容器,实现了SortedAssociative Container.Sorted Associative Container和Unique Associative Container概念的接口规范. map技术原理 图中所示是map容器的一个元素的数据组成,可通过pair封装成一个结构对象.map容器所要做的,就是将这个pai

stl std::map容器排序及使用注意事项 .

01.#include "stdafx.h" 02.#include <map> 03.#include <iostream> 04. 05.int _tmain(int argc, _TCHAR* argv[]) 06.{ 07. /** 08. * map中的每个元素都是一个pair类型 09. * 对于插入其中的元素都会默认按键值升序排列好 10. */ 11. 12. std::map<int, int> m; 13. m.insert(st

如何在STL的map中使用结构体作为键值

这里首先给出容器map的原型: template < class Key, class T, class Compare = less<Key>, class Alloc = alloc> class map{ ... } 可以看到模板参数一共有四个,第一个就是Key,即键:第二个就是值:第四个就是空间配置器,默认使用alloc(随STL版本不同而不同).那么第三个是啥? 我们知道,map的底层数据结构,其实是树,更确切的说,是一个RB-tree(红黑树).RB-tree树在进行插

STL中map与hash_map容器的选择

[转]STL中map与hash_map容器的选择 先看看alvin_lee 朋友做的解析,我觉得还是很正确的,从算法角度阐述了他们之间的问题! 实际上这个问题不光C++会遇到,其他所有语言的标准容器的实现及选择上都是要考虑的.做应用程序你可能觉得影响不大,但是写算法或者核心代码就要小心了.今天改进代码,顺便又来温习基础功课了. 还记得Herb Sutter那极有味道的<C++对话系列>么,在其中<产生真正的hash对象>这个故事里就讲了map的选择.顺便回顾一下,也讲一下我在实用中

[转]正确使用C++ STL中的map容器

先声明:下面的文章是针对windows的用法,因为std::map的erase函数的windows的实现版本是返回一个std::map的迭代器,但是STL标准里面的该函数的返回值确是: map.erase有3个重载:void erase ( iterator position );size_type erase ( const key_type& x );void erase ( iterator first, iterator last ); . 所以下面的代码中的最后一个例子仅仅可以在win

C++STL之关联容器【map】【set】

map以键-值対的形式组织,键的作用在于索引,而值表示所存储和读取数据. set仅包含一个键,并且有效的支持某个键是否存在的查询. 他们都是基于标准型类库pair实现,该类型在utility头文件中. 一:关于pair类型的操作 pair<T1,T2> p1; //创建一个空pair类型 pair<T1,T2> p1(v1,v2); //创建并初始化 make_pair(v1,v2) //生成pair对象 <,>,==,!=  //类型之间比较,遵循字典序,先比较fir

c++ 提高4 map容器 共性机制 使用时机 比较| STL算法 算法基础仿函数 谓词 函数适配器 遍历算法

[本文谢绝转载] <大纲> STL 容器 map 容器的4中初始化 遍历 map容器 元素的删除观测map.insert返回值,方法123,已存在就报错,初始化方法4会覆盖 map的查找,异常处理 map容器的range返回两个迭代器 multimap案例,按照部门_增删员工信息 容器共性机制 把对象放到容器中,会自动执行拷贝构造函数 各个容器的使用时机 vector与deque的比较: 算法 算法基础 函数对象(仿函数) 函数对象 与普通函数的区别:--  相同之处 函数对象 与普通函数的区