扩增子统计绘图1箱线图:Alpha多样性

绘制Alpha多样性线箱图

绘图和统计全部为R语言,建议复制代码,在Rstuido中运行,并设置工作目录为存储之前分析结果文件的result目录

# 运行前,请在Rstudio中菜单栏选择“Session - Set work directory -- Choose directory”,弹窗选择之前分析目录中的result文件夹

# 安装相关软件包,如果末安装改为TRUE运行即可安装
if (FALSE){
    source("https://bioconductor.org/biocLite.R")
    biocLite(c("ggplot2"))
}

# 加载相关软件包
library("ggplot2") # load related packages

# 读入实验设计和Alpha多样性值
design = read.table("design.txt", header=T, row.names= 1, sep="\t")
alpha = read.table("alpha.txt", header=T, row.names= 1, sep="\t")

# 以Observed OTU为例进行可视化和统计分析,其它指数将observed_otus替换为shannon, chao1, PD_whole_tree即可计算

# 合并Alpha指数与实验设计
index = cbind(alpha, design[match(rownames(alpha), rownames(design)), ])
# 绘图代码、预览、保存PDF
p = ggplot(index, aes(x=genotype, y=observed_otus, color=genotype))+
  geom_boxplot(alpha=1, outlier.size=0, size=0.7, width=0.5, fill="transparent") +
  geom_jitter( position=position_jitter(0.17), size=1, alpha=0.7)+
  labs(x="Groups", y="observed_otus index")
p
ggsave(paste("alpha_observed_otus.pdf", sep=""), p, width = 5, height = 3)

# 统计组间是否显著差异
# anova对指数与分组统计
observed_otus_stats <- aov(observed_otus ~ genotype, data = index)
# 使用TukeyHSD对组间进行检验,效正pvalue
Tukey_HSD_observed_otus <- TukeyHSD(observed_otus_stats, ordered = FALSE, conf.level = 0.95)
# 结果中提取需要的结果
Tukey_HSD_observed_otus_table <- as.data.frame(Tukey_HSD_observed_otus$genotype)
# 预览结果
Tukey_HSD_observed_otus_table
# 保存结果到文件,按Pvaule值由小到大排序
write.table(Tukey_HSD_observed_otus_table[order(Tukey_HSD_observed_otus_table$p, decreasing=FALSE), ], file="alpha_observed_otus_stats.txt",append = FALSE, quote = FALSE, sep="\t",eol = "\n", na = "NA", dec = ".", row.names = TRUE,col.names = TRUE)

Observed OTU多样性箱线图

各组间的统计结果如下:主要看最后一列p adj(Adjust P-value)是否显著,本文数据不显著

diff    lwr     upr     p adj
OE-KO   -7.52380952380952       -24.480725165752        9.43310611813294        0.515429907536906
WT-KO   -6.11111111111111       -21.9728532782553       9.75063105603303        0.604309699204896
WT-OE   1.4126984126984 -15.5442172292441       18.3696140546409        0.976169656924344
时间: 2024-12-20 03:01:30

扩增子统计绘图1箱线图:Alpha多样性的相关文章

扩增子图表解读1箱线图:Alpha多样性

箱线图 箱形图(Box-plot)又称为盒须图.盒式图或箱线图,是一种用作显示一组数据分散情况资料的统计图.因形状如箱子而得名.在宏基因组领域,常用于展示样品组中各样品Alpha多样性的分布 第一种情况,最大或最小值没有超过1.5倍箱体范围 第二种情况,最大或最小值超过1.5倍箱体范围,外位延长线外,即异常值(outliers) Alpha多样性 知识背景:Alpha多样性计算方法 常见的丰度估计方法有Shannon, Chao1和Observed OTU和PD whole tree等.我最喜欢

python3绘图示例4(基于matplotlib:箱线图、散点图等)

#!/usr/bin/env python# -*- coding:utf-8 -*- from matplotlib.pyplot import * x=[1,2,3,4]y=[5,4,3,2] # 创建新图标figure() # 对角线图 第1个参数:2行 第2个参数:3列的网格 第3个参数:图形在网格的位置subplot(231)plot(x,y) # 垂直柱状图subplot(232)bar(x,y) # 水平柱状图subplot(233)barh(x,y) # 堆叠柱状图-颜色间隔su

Matlab boxplot for Multiple Groups(多组数据的箱线图)

在画之前首先介绍一下Matlab boxplot,下面这段说明内容来自http://www.plob.org/2012/06/10/2153.html 由于matlab具有强大的计算功能,用其统计数据功能优点显而易见,这里分享使用matlab中的boxplot的一些技巧,供大家参考. Matlab boxplot命令 格式如下 boxplot(X):产生矩阵X的每一列的盒图和“须”图,“须”是从盒的尾部延伸出来,并表示盒外数据长度的线,如果“须”的外面没有数据,则在“须”的底部有一个点. www

matplotlib学习日记(六)-箱线图

(一)箱线图---由一个箱体和一对箱须组成,箱体是由第一个四分位数,中位数和第三四分位数组成,箱须末端之外的数值是离散群,主要应用在一系列测量和观测数据的比较场景 import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np mpl.rcParams["font.sans-serif"] = ["FangSong"] mpl.rcParams["axes.unicod

pyhton中matplotlib箱线图的绘制(matplotlib双轴图、箱线图、散点图以及相关系数矩阵图))

//2019.07.23 1.箱形图,又称为盒式图,一般可以很好地反映出数据分布的特征,也可以进行多项数据之间分布特征的比较,它主要包含五个基础数据:中位数,两个上下分位数以及上下边缘线数据 其中的一些参数具体含义及其计算过程如下: 2.双轴图的绘制代码:import numpy as npimport matplotlib.pyplot as pltimport pandas as pdplt.rcParams["font.sans-serif"]=["SimHei&quo

pandas 生成并排放置的条形图和箱线图

1.代码 import numpy as np import pandas as pd import matplotlib.pyplot as plt # 生成数据,创建 DataFrame np.random.seed(27) data = np.random.rand(7, 3) index = ['Customer ' + str(i) for i in range(1, 8)] Metrics = ['Metric ' + str(i) for i in range(1, 4)] df

【数据分析&amp;数据挖掘】异常值的判断与去除——3σ &amp; 箱线图分析

1 import pandas as pd 2 3 # 异常值 ——远离正常值范围的错误值 4 # 异常值 ——删掉 5 6 # 异常值判断 ——3σ 箱线图分析 7 8 # 3σ 接住标准正态部分得到的规律——99.73%都在(μ-3α,μ+3α)之间,超过这个范围的数据认为是异常的 9 10 def three_sigma(data): 11 """ 12 进行3sigma异常值剔除 13 :param data: 原数据——series 14 :return: bool

【数据分析&amp;数据挖掘】2000-2017年各个产业生产总值箱线图

1 import matplotlib.pyplot as plt 2 import numpy as np 3 4 5 # 构建数据 6 def build_data(): 7 res = np.load("./国民经济核算季度数据.npz", allow_pickle=True) 8 columns = res["columns"] 9 values = res["values"] 10 return columns, values 11 1

python可视化---箱线图boxplot()

函数功能:绘制箱线图. 调用签名:plt.boxplot(x) x:绘制箱线图的输入数据 代码实现: import matplotlib.pyplot as plt import matplotlib as mpl import numpy as np mpl.rcParams["font.sans-serif"] = ["FangSong"] mpl.rcParams["axes.unicode_minus"] = False x = np.r