poj1651 最优矩阵乘法动态规划解题

题目描述:


有若干个矩阵{Ai},元素都为整数且已知矩阵大小。

如果要计算所有矩阵的乘积A1 * A2 * A3 .. Am,最少要多少次整数乘法?

输入
第一行一个整数n(n <= 100),表示一共有n-1个矩阵。
第二行n个整数B1, B2, B3... Bn(Bi <= 100),第i个数Bi表示第i个矩阵的行数和第i-1个矩阵的列数。
等价地,可以认为第j个矩阵Aj(1 <= j <= n - 1)的行数为Bj,列数为Bj+1。
输出
一个整数,表示最少所需的乘法次数
采用动态规划分析:
优化目标是基本运算次数最小化,而这道题关键在于确定一个乘法的次序,相当于在n个矩阵间加括号。如何界定子问题的边界是产生的问题。如果从前向后划分,所产生的子问题只有后边界,但是在计算子问题A1.....j的过程中,我们需要知道子问题A1....i和子问题A(i+1)....j的信息,所以问题需要前后两个边界。用m[i][j]表示乘积Ai....j所用的最小运算次数。假定最后一次相乘发生在Ai.....k和A(k+1).....j之间,那么m[i][j]=min(i≤k<j){m[i][k]+m[k+1][j]+B(i-1)*B(k)*B(j)};
下边是代码的c语言实现
#include<iostream>
#include<stdio.h>
#include<string.h>
using namespace std;
const int MAX=10000;
int m[101][MAX];
int dp(int *p,int n){
    for(int r=2;r<=n;r++){
        for(int i=1;i<=n-r+1;i++){
            int j=i+r-1;
            m[i][j]=m[i+1][j]+p[i-1]*p[i]*p[j];
            for(int k=i+1;k<=j-1;k++){
                int t= m[i][k]+m[k+1][j]+p[i-1]*p[k]*p[j];
                if(t<m[i][j]){
                    m[i][j]=t;
                }
            }
        }
    }
    return m[1][n];
}
int main(){
    int n;
    scanf("%d",&n);
    memset(m,0,sizeof(m));
    int p[120];    
    for(int i=0;i<n;i++){
        scanf("%d",p+i);
    }
    int res=dp(p,n-1);
    printf("%d\n",res);
    return 0;
}

算法时间复杂度为O(n3)。

时间: 2024-10-06 03:23:19

poj1651 最优矩阵乘法动态规划解题的相关文章

Codeforces 506E Mr. Kitayuta&#39;s Gift (矩阵乘法,动态规划)

描述: 给出一个单词,在单词中插入若干字符使其为回文串,求回文串的个数(|s|<=200,n<=10^9) 这道题超神奇,不可多得的一道好题 首先可以搞出一个dp[l][r][i]表示回文串左边i位匹配到第l位,右边i位匹配到第r位的状态数,可以发现可以用矩阵乘法优化(某人说看到n这么大就一定是矩阵乘法了= =) 但这样一共有|s|^2个节点,时间复杂度无法承受 我们先把状态树画出来:例如add 可以发现是个DAG 我们考虑把单独的每条链拿出来求解,那么最多会有|s|条不同的链,链长最多为|s

BZOJ_1009_[HNOI2008]_GT考试_(动态规划+kmp+矩阵乘法优化+快速幂)

描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1009 字符串全部由0~9组成,给出一个串s,求一个长度为n的串,不包含s的种类有多少. 分析 第一眼以为是组合.然后更滑稽的是用错误的方法手算样例居然算出来是对的...我数学是有多差... 题解也是看了好半天,有点难理解. 感觉PoPoQQQ神犇讲得还是比较清楚的.传送门:http://blog.csdn.net/popoqqq/article/details/40188173 我们用dp[

BZOJ 4870 [Shoi2017]组合数问题 ——动态规划 矩阵乘法

注意到$r<k$ 别问我为什么要强调. 考场上前30分水水. 然后写阶乘的时候大力$n\log {n}$预处理 本机跑的挺快的,然后稳稳的T掉了. 然后就是简单的矩阵乘法了. #include <map> #include <cmath> #include <queue> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm

POJ1651:Multiplication Puzzle(区间DP 最优矩阵链乘)

题意:除了头尾不能动,每次取出一个数字,这个数字与左右相邻数字的乘积为其价值,最后将所有价值加起来,要求最小值 和最优矩阵链乘模型一样,最后取出的数决定了序,如果没学过最优矩阵连乘找重复子问题还是比较难找的 DP //180K 0MS #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> using namespace std; int dp[110][110];

矩阵乘法的Strassen算法详解

题目描述 请编程实现矩阵乘法,并考虑当矩阵规模较大时的优化方法. 思路分析 根据wikipedia上的介绍:两个矩阵的乘法仅当第一个矩阵B的列数和另一个矩阵A的行数相等时才能定义.如A是m×n矩阵和B是n×p矩阵,它们的乘积AB是一个m×p矩阵,它的一个元素其中 1 ≤ i ≤ m, 1 ≤ j ≤ p. 值得一提的是,矩阵乘法满足结合律和分配率,但并不满足交换律,如下图所示的这个例子,两个矩阵交换相乘后,结果变了: 下面咱们来具体解决这个矩阵相乘的问题. 解法一.暴力解法 其实,通过前面的分析

tyvj1198 最优矩阵连乘

描述 一个n*m矩阵由n行m列共n*m个数排列而成.两个矩阵A和B可以相乘当且仅当A的列数等于B的行数.一个N*M的矩阵乘以一个M*P的矩阵等于一个N*P的矩阵,运算量为nmp.   矩阵乘法满足结合律,A*B*C可以表示成(A*B)*C或者是A*(B*C),两者的运算量却不同.例如当A=2*3 B=3*4 C=4*5时,(A*B)*C=64而A*(B*C)=90.显然第一种顺序节省运算量.   现在给出N个矩阵,并输入N+1个数,第i个矩阵是a[i-1]*a[i] 输入格式 第一行n(n<=1

矩阵乘法专题1——bzoj 1297 [SCOI2009] 迷路题解

题目链接 题意:给两个长度分别为n和m的序列,现在有两种操作:1.分别选择两个序列的一个非空前缀,切两个前缀的最后一位相同,删除之,得到1分(只累计),消耗e:2.直接删除两个序列,消耗值定于两个序列之前删除的元素个数之和,并且使得得到的分有效(之前没有有效分) 分析: 首先,问题其实就是转化成,进行若干次操作1,然后进行操作2 还要找到一个判别标准,来评判较优的状态(贪心) 每次的消耗值比较大,其实可以计算出最大的删除次数,这个值不是很大 状态表示: 简单的,一个状态可以表示为串A的位置.串B

学习心得:《十个利用矩阵乘法解决的经典题目》from Matrix67

本文来自:http://www.matrix67.com/blog/archives/tag/poj大牛的博文学习学习 节选如下部分:矩阵乘法的两个重要性质:一,矩阵乘法不满足交换律:二,矩阵乘法满足结合律经典题目1 给定n个点,m个操作,构造O(m+n)的算法输出m个操作后各点的位置.操作有平移.缩放.翻转和旋转    这 里的操作是对所有点同时进行的.其中翻转是以坐标轴为对称轴进行翻转(两种情况),旋转则以原点为中心.如果对每个点分别进行模拟,那么m个操作总共耗时 O(mn).利用矩阵乘法可

用矩阵乘法优化递推

(有关矩阵乘法的基本规则请自行搜索) 引例:求斐波那契数列的第 n 项 mod 1000000007 的值,n <= 1018. 分析:斐波那契数列的递推式为 f(n) = f(n-1)+f(n-2),直接循环求出 f(n) 的时间复杂度是 O(n),对于题目中的数据范围显然无法承受.很明显我们需要对数级别的算法. 由于 f(n) = 1*f(n-1) + 1*f(n-2) 这样的形式很类似于矩阵的乘法,所以我们可以先把这个问题复杂化一下,将递推求解 f(n) 与 f(n-1) 的过程看作是某两