NLP用CNN分类Mnist,提取出来的特征训练SVM及Keras的使用(demo)

用CNN分类Mnist http://www.bubuko.com/infodetail-777299.html      /DeepLearning Tutorials/keras_usage
提取出来的特征训练SVMhttp://www.bubuko.com/infodetail-792731.html  ./dive_into _keras

自己动手写demo实现

时间: 2024-10-05 22:30:59

NLP用CNN分类Mnist,提取出来的特征训练SVM及Keras的使用(demo)的相关文章

利用keras搭建CNN进行mnist数据集分类

当接触深度学习算法的时候,大家都很想自己亲自实践一下这个算法,但是一想到那些复杂的程序,又感觉心里面很累啊,又要学诸如tensorflow.theano这些框架.那么,有没有什么好东西能够帮助我们快速搭建这个算法呢?当然是有咯!,现如今真不缺少造轮子的大神,so,我强烈向大家推荐keras,Keras是一个高层神经网络API,Keras由纯Python编写而成并基Tensorflow或Theano.Keras为支持快速实验而生,能够把你的idea迅速转换为结果. 具体keras的安装与使用,请参

python用K近邻(KNN)算法分类MNIST数据集和Fashion MNIST数据集

一.KNN算法的介绍 K最近邻(k-Nearest Neighbor,KNN)分类算法是最简单的机器学习算法之一,理论上比较成熟.KNN算法首先将待分类样本表达成和训练样本一致的特征向量:然后根据距离计算待测试样本和每个训练样本的距离,选择距离最小的K个样本作为近邻样本:最后根据K个近邻样本判断待分类样本的类别.KNN算法的正确选取是分类正确的关键因素之一,而近邻样本是通过计算测试样本与每个训练集样本的距离来选定的,故定义合适的距离是KNN正确分类的前提. 本文中在上述研究的基础上,将特征属性值

原来CNN是这样提取图像特征的。。。

对于即将到来的人工智能时代,作为一个有理想有追求的程序员,不懂深度学习(Deep Learning)这个超热的领域,会不会感觉马上就out了?作为机器学习的一个分支,深度学习同样需要计算机获得强大的学习能力,那么问题来了,我们究竟要计算机学习什么东西?答案当然是图像特征了.将一张图像看做是一个个像素值组成的矩阵,那么对图像的分析就是对矩阵的数字进行分析,而图像的特征,就隐藏在这些数字规律中.深度学习对外推荐自己的一个很重要的点--深度学习能够自动提取特征.本文主要介绍卷积层提取特征的原理过程,文

python逻辑回归分类MNIST数据集

一.逻辑回归的介绍 logistic回归又称logistic回归分析,是一种广义的线性回归分析模型,常用于数据挖掘,疾病自动诊断,经济预测等领域.例如,探讨引发疾病的危险因素,并根据危险因素预测疾病发生的概率等.以胃癌病情分析为例,选择两组人群,一组是胃癌组,一组是非胃癌组,两组人群必定具有不同的体征与生活方式等.因此因变量就为是否胃癌,值为"是"或"否",自变量就可以包括很多了,如年龄.性别.饮食习惯.幽门螺杆菌感染等.自变量既可以是连续的,也可以是分类的.然后通

用LSTM分类 MNIST

LSTM是RNN的一种算法, 在序列分类中比较有用.常用于语音识别,文字处理(NLP)等领域. 等同于VGG等CNN模型在在图像识别领域的位置.  本篇文章是叙述LSTM 在MNIST 手写图中的使用. 用来给初步学习RNN的一个范例,便于学习和理解LSTM . 先把工作流程图贴一下: 代码片段 : 数据准备 def makedata(): img_rows, img_cols = 28, 28 mnist = fetch_mldata("MNIST original") # resc

Tensorflow中使用CNN实现Mnist手写体识别

本文参考Yann LeCun的LeNet5经典架构,稍加ps得到下面适用于本手写识别的cnn结构,构造一个两层卷积神经网络,神经网络的结构如下图所示: 输入-卷积-pooling-卷积-pooling-全连接层-Dropout-Softmax输出 第一层卷积利用5*5的patch,32个卷积核,可以计算出32个特征.然后进行maxpooling.第二层卷积利用5*5的patch,64个卷积核,可以计算出64个特征.然后进行max pooling.卷积核的个数是我们自己设定,可以增加卷积核数目提高

NLP文本情感分类

文本情感分类: 文本情感分类(一):传统模型 http://spaces.ac.cn/index.php/archives/3360/ 测试句子:工信处女干事每月经过下属科室都要亲口交代24口交换机等技术性器件的安装工作 分词工具 测试结果 结巴中文分词 工信处/ 女干事/ 每月/ 经过/ 下属/ 科室/ 都/ 要/ 亲口/ 交代/ 24/ 口/ 交换机/ 等/ 技术性/ 器件/ 的/ 安装/ 工作 中科院分词 工/n 信/n 处女/n 干事/n 每月/r 经过/p 下属/v 科室/n 都/d

【deep learning精华部分】稀疏自编码提取高阶特征、多层微调完全解释及代码逐行详解

我们前面已经讲了如何训练稀疏自编码神经网络,当我们训练好这个神经网络后,当有新的样本输入到这个训练好的稀疏自编码器中后,那么隐藏层各单元的激活值组成的向量就可以代表(因为根据稀疏自编码,我们可以用来恢复),也就是说就是在新的特征下的特征值.每一个特征是使某一个取最大值的输入.假设隐藏层单元有200个,那么就一共有200个特征,所以新的特征向量有200维.特征显示情况在前面博客中已经给出,我们把这时候的特征称为一阶特征. 我们知道脑神经在处理问题,比如看一个图片的时候,也不只使用了一层的神经,而是

Caffe提取任意层特征并进行可视化

原图 conv1层可视化结果 (96个filter得到的结果) 数据模型与准备 安装好Caffe后,在examples/images文件夹下有两张示例图像,本文即在这两张图像上,用Caffe提供的预训练模型,进行特征提取,并进行可视化. 1. 进入caffe根目录,创建临时文件夹,用于存放所需要的临时文件 mkdir examples/_temp 2. 根据examples/images文件夹中的图片,创建包含图像列表的txt文件,并添加标签(0) find `pwd`/examples/ima