python mapplotlib

http://liam0205.me/2014/09/11/matplotlib-tutorial-zh-cn/   这是讲解比较详细的样列

自己做的一些笔记

# -*- coding: utf-8 -*-
# -----------------------------------------------------------------------------
# Copyright (c) 2015, Nicolas P. Rougier. All Rights Reserved.
# Distributed under the (new) BSD License. See LICENSE.txt for more info.
# -----------------------------------------------------------------------------
import numpy as np
import matplotlib.pyplot as plt
"""
#dpi 图像分辨率
plt.figure(figsize=(8,5), dpi=80)
ax = plt.subplot(111)
#图像四周的框框
ax.spines[‘right‘].set_color(‘none‘)
ax.spines[‘top‘].set_color(‘none‘)
#设置横轴与框的位置
ax.xaxis.set_ticks_position(‘bottom‘)
ax.spines[‘bottom‘].set_position((‘data‘,0))
#设置纵轴与框的位置
ax.yaxis.set_ticks_position(‘left‘)
#设置框的中心点位置与轴的关系
ax.spines[‘left‘].set_position((‘data‘,0))

#得到一个均匀分度的list 把-pi 到pi
X = np.linspace(-np.pi, np.pi, 256,endpoint=True)
C,S = np.cos(X), np.sin(X)

plt.plot(X, C, color="blue", linewidth=2.5, linestyle="-", label="cosine")
plt.plot(X, S, color="red", linewidth=2.5, linestyle="-", label="sine")

#左右边界
plt.xlim(X.min()*1.1, X.max()*1.1)

#设置坐标值
plt.xticks([-np.pi, -np.pi/2, 0, np.pi/2, np.pi],
[r‘$-\pi$‘, r‘$-\pi/2$‘, r‘$0$‘, r‘$+\pi/2$‘, r‘$+\pi$‘]) #LaTex

plt.ylim(C.min()*1.1,C.max()*1.1)
plt.yticks([-1, +1],
[r‘$-1$‘, r‘$+1$‘])

#对两函数标注的位置
plt.legend(loc=‘upper left‘, frameon=False)
# plt.savefig("../figures/exercice_8.png",dpi=72)
plt.show()
"""

"""
# -----------------------------------------------------------------------------
# Copyright (c) 2015, Nicolas P. Rougier. All Rights Reserved.
# Distributed under the (new) BSD License. See LICENSE.txt for more info.
# -----------------------------------------------------------------------------
import numpy as np
import matplotlib.pyplot as plt

plt.figure(figsize=(8,5), dpi=80)
ax = plt.subplot(111)
ax.spines[‘right‘].set_color(‘none‘)
ax.spines[‘top‘].set_color(‘none‘)
ax.xaxis.set_ticks_position(‘bottom‘)
ax.spines[‘bottom‘].set_position((‘data‘,0))
ax.yaxis.set_ticks_position(‘left‘)
ax.spines[‘left‘].set_position((‘data‘,0))

X = np.linspace(-np.pi, np.pi, 256,endpoint=True)
C,S = np.cos(X), np.sin(X)

plt.plot(X, C, color="blue", linewidth=2.5, linestyle="-", label="cosine")
plt.plot(X, S, color="red", linewidth=2.5, linestyle="-", label="sine")

plt.xlim(X.min()*1.1, X.max()*1.1)
plt.xticks([-np.pi, -np.pi/2, 0, np.pi/2, np.pi],
[r‘$-\pi$‘, r‘$-\pi/2$‘, r‘$0$‘, r‘$+\pi/2$‘, r‘$+\pi$‘])

plt.ylim(C.min()*1.1,C.max()*1.1)
plt.yticks([-1, +1],
[r‘$-1$‘, r‘$+1$‘])

t = 2*np.pi/3
plt.plot([t,t],[0,np.cos(t)],
color =‘blue‘, linewidth=1.5, linestyle="--")
#100 表示点的大小
plt.scatter([t,],[np.cos(t),], 100, color =‘blue‘)

#LaTex
plt.annotate(r‘$\sin(\frac{2\pi}{3})=\frac{\sqrt{3}}{2}$‘,
xy=(t, np.sin(t)), xycoords=‘data‘,
xytext=(+10, +30), textcoords=‘offset points‘, fontsize=16,
arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2"))

plt.plot([t,t],[0,np.sin(t)],
color =‘red‘, linewidth=1.5, linestyle="--")
plt.scatter([t,],[np.sin(t),], 50, color =‘red‘)
# xy需要标注点的位置 xytext 注释位置 textcoords注释位置的坐标系是什么
plt.annotate(r‘$\cos(\frac{2\pi}{3})=-\frac{1}{2}$‘,
xy=(t, np.cos(t)), xycoords=‘data‘,
xytext=(-90, -50), textcoords=‘offset points‘, fontsize=16,
arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2"))
for label in ax.get_xticklabels() + ax.get_yticklabels():
label.set_fontsize(16)
label.set_bbox(dict(facecolor=‘white‘, edgecolor=‘None‘, alpha=0.65 ))
plt.legend(loc=‘upper left‘, frameon=False)
#plt.savefig("../figures/exercice_9.png",dpi=72)
plt.show()
"""
"""
from pylab import *

axes([0.1,0.1,.8,.8])
xticks([]), yticks([])
text(0.6,0.6, ‘axes([0.1,0.1,.8,.8])‘,ha=‘center‘,va=‘center‘,size=20,alpha=.5)

axes([0.2,0.2,.3,.3])
xticks([]), yticks([])
text(0.5,0.5, ‘axes([0.2,0.2,.3,.3])‘,ha=‘center‘,va=‘center‘,size=16,alpha=.5)

# plt.savefig("../figures/axes.png",dpi=64)
show()
"""
"""
# -----------------------------------------------------------------------------
# Copyright (c) 2015, Nicolas P. Rougier. All Rights Reserved.
# Distributed under the (new) BSD License. See LICENSE.txt for more info.
# -----------------------------------------------------------------------------
import numpy as np
import matplotlib.pyplot as plt

n = 256
X = np.linspace(-np.pi,np.pi,n,endpoint=True)
Y = np.sin(2*X)

plt.axes([0.025,0.025,0.95,0.95])

plt.axes()
plt.plot (X, Y+1, color=‘blue‘, alpha=1.00)
plt.fill_between(X, 1, Y+1, color=‘blue‘, alpha=.25)

plt.plot (X, Y-1, color=‘blue‘, alpha=1.00)
plt.fill_between(X, -1, Y-1, (Y-1) > -1, color=‘blue‘, alpha=.25)
plt.fill_between(X, -1, Y-1, (Y-1) < -1, color=‘red‘, alpha=.25)

plt.xlim(-np.pi,np.pi), plt.xticks([])
plt.ylim(-2.5,2.5), plt.yticks([])
# savefig(‘../figures/plot_ex.png‘,dpi=48)
plt.show()
"""
# -----------------------------------------------------------------------------
# Copyright (c) 2015, Nicolas P. Rougier. All Rights Reserved.
# Distributed under the (new) BSD License. See LICENSE.txt for more info.
# -----------------------------------------------------------------------------
#柱状图
import numpy as np
import matplotlib.pyplot as plt

n = 12
X = np.arange(n)
Y1 = (1-X/float(n)) * np.random.uniform(0.5,1.0,n)
Y2 = (1-X/float(n)) * np.random.uniform(0.5,1.0,n)

plt.axes([0.025,0.025,0.95,0.95])
plt.bar(X, +Y1, facecolor=‘#9999ff‘, edgecolor=‘white‘)
plt.bar(X, -Y2, facecolor=‘#ff9999‘, edgecolor=‘white‘)

for x,y in zip(X,Y1):
plt.text(x+0.4, y+0.05, ‘%.2f‘ % y, ha=‘center‘, va= ‘bottom‘)

for x,y in zip(X,Y2):
plt.text(x+0.4, -y-0.05, ‘%.2f‘ % y, ha=‘center‘, va= ‘top‘)

plt.xlim(-.5,n), plt.xticks([])
plt.ylim(-1.25,+1.25), plt.yticks([])

# savefig(‘../figures/bar_ex.png‘, dpi=48)
plt.show()

时间: 2024-10-13 21:45:20

python mapplotlib的相关文章

Python学习1-Python和Pycharm的下载与安装

本文主要介绍Python的下载安装和Python编辑器Pycharm的下载与安装. 一.Python的下载与安装 1.下载 到Python官网上下载Python的安装文件,进入网站后显示如下图: 网速访问慢的话可直接在这里下载:python-2.7.11.amd64 在Downloads中有对应的支持的平台,这里我们是在Windows平台下运行,所以点击Windows,出现如下: 在这里显示了Python更新的所有版本,其中最上面两行分别是Python2.X和Python3.X对应的最后更新版本

Python——深入理解urllib、urllib2及requests(requests不建议使用?)

深入理解urllib.urllib2及requests            python Python 是一种面向对象.解释型计算机程序设计语言,由Guido van Rossum于1989年底发明,第一个公开发行版发行于1991年,Python 源代码同样遵循 GPL(GNU General Public License)协议[1] .Python语法简洁而清晰,具有丰富和强大的类库. urllib and urllib2 区别 urllib和urllib2模块都做与请求URL相关的操作,但

python学习_day26_面向对象之封装

1.私有属性 (1)动态属性 在python中用双下划线开头的方式将属性隐藏起来.类中所有双下划线开头的名称,如__x都会自动变形成:_类名__x的形式.这种自动变形的特点是: a.类中定义的__x只能在内部使用,如self.__x,引用的就是变形的结果.b.这种变形其实正是针对外部的变形,在外部是无法通过__x这个名字访问到的.c.在子类定义的__x不会覆盖在父类定义的__x,因为子类中变形成了:_子类名__x,而父类中变形成了:_父类名__x,即双下滑线开头的属性在继承给子类时,子类是无法覆

python面向对象知识点疏理

面向对象技术简介 类: 用来描述具有相同的属性和方法的对象的集合.它定义了该集合中每个对象所共有的属性和方法.对象是类的实例.class 类变量:类变量在整个实例化的对象中是公用的.类变量定义在类中且在函数体之外.类变量通常不作为实例变量使用. 数据成员:类变量或者实例变量用于处理类及其实例对象的相关的数据. 方法重写:如果从父类继承的方法不能满足子类的需求,可以对其进行改写,这个过程叫方法的覆盖,也称为方法的重写. 实例变量:定义在方法中的变量,只作用于当前实例的类. 继承:即一个派生类(de

python实现网页登录时的rsa加密流程

对某些网站的登录包进行抓包时发现,客户端对用户名进行了加密,然后传给服务器进行校验. 使用chrome调试功能断点调试,发现网站用javascript对用户名做了rsa加密. 为了实现网站的自动登录,需要模拟这个加密过程. 网上搜了下关于rsa加密的最简明的解释: rsa加密是非对称加密算法,该算法基于一个十分简单的数论事实:将两个大素数相乘十分容易,但那时想要对其乘积进行因式分解却极其困难,因此可以将乘积公开作为加密密钥,即公钥,而两个大素数组合成私钥.公钥是可发布的供任何人使用,私钥则为自己

Python中编码的详细讲解

看这篇文章前,你应该已经知道了为什么有编码,以及编码的种类情况 ASCII 占1个字节,只支持英文 GB2312 占2个字节,支持6700+汉字 GBK GB2312的升级版,支持21000+汉字 Shift-JIS 日本字符 ks_c_5601-1987 韩国编码 TIS-620 泰国编码 由于每个国家都有自己的字符,所以其对应关系也涵盖了自己国家的字符,但是以上编码都存在局限性,即:仅涵盖本国字符,无其他国家字符的对应关系.应运而生出现了万国码,他涵盖了全球所有的文字和二进制的对应关系, U

Python练习(一)

Python练习(一): 给一个不超过5位的正整数,判断其有几位,依次打印出个位.十位.百位.千位.万位的数字: num = int(input('please enter a number: '))   lst = [] for i in str(num):      lst.append(i) lenlst = len(lst) if num >= 1000:      if num >= 10000:          print('too big')     else:        

菜鸟学python之对象类型及运算

Python 中的变量不需要声明.每个变量在使用前都必须赋值,变量赋值以后该变量才会被创建. 在 Python 中,变量就是变量,它没有类型,我们所说的"类型"是变量所指的内存中对象的类型. 等号(=)用来给变量赋值. 1 变量赋值 1.1 单个变量赋值 >>> name="python" >>> print(name) python 1.2 多个变量赋值 >>> name=names="python&

开始我的Python爬虫学习之路

因为工作需要经常收集一些数据,我就想通过学爬虫来实现自动化完成比较重复的任务. 目前我Python的状况,跟着敲了几个教程,也算是懂点基础,具体比较深入的知识,是打算从做项目中慢慢去了解学习. 我是觉得如果一开始就钻细节的话,是很容易受到打击而放弃的,做点小项目让自己获得点成就感路才更容易更有信心走下去. 反正遇到不懂的就多查多问就对了. 知乎上看了很多关于入门Python爬虫的问答,给自己总结出了大概的学习方向. 基础: HTML&CSS,JOSN,HTTP协议(这些要了解,不太需要精通) R