对我启发最大的数学学习方法(转自知乎)

数学方面的能力该怎么培养
数学系博士怒答!

我想大家都有这样的体会:小学的时候你根本不知道初中数学是什么样,高中的时候你也根本想不到大学数学是什么样。而大学生,如果你不专注于数学,恐怕也不知道现代数学是什么模样。下面将分别从学数学的动机、数学不同学科的分类以及如何切实可行培养数学能力等几个方面阐述如何学习数学。(另外,欢迎大家收看在数学系读书的感受如何?体会一下数学的乐趣,数学系人的特点以及智商不够该怎么办。)

================进入正题========如何学好数学===============
一、认清你的需要
为什么需要学习数学,这是你首先需要想清楚的问题。数学学科子分类多、每一本数学书中都有许多定理和结论,需要花大量时间研究。而人的时间是宝贵的、有限的,所以你需要大体有一个目标和计划,合理安排时间。
1.1 你的目标是精通数学、钻研数学,以数学谋生,你可能立志掌握代数几何,或者想精通前沿物理。那么你需要打下坚实的现代代数、几何以及分析基础,你需要准备大量时间和精力,拥有坚定不移的决心。(要求:精通全部三级高等数学)
1.2 你的目标是能够熟练运用高等数学,解决问题,掌握探索新应用领域的武器,你可能立志进入计算机视觉领域、经济学领域或数据挖掘领域。那么,你需要打下坚实的矩阵论、微积分以及概率统计基础。(要求:精通第一级高等数学)
1.3 你的目标是想了解数学的乐趣,把学数学作为人生一大业余爱好。那么,你需要打下坚实的线性代数、数学分析、拓扑学以及概率统计基础,对你来说,体会学数学的乐趣是一个更重要的目标。(精通第一级高等数学,在第二级高等数学中畅游,尝试接触第三级高等数学)

二、给自己足够的动力
学数学需要智力,更需要时间和精力。下面的几个事实相大家都深有体会:
1. 凡是没有用的东西,或者虽然有用,但是你用不到的东西,学得快忘得也快。不信你回忆一下你大一或者初一的基础课,你还记的清楚吗?
2. 凡是你不感兴趣(或者感觉不到乐趣)的东西,你很难坚持完成它。很多人都有这样的经历,一本书,前三章看的很仔细,后面就囫囵吞枣,越看越快,反正既没意思也没用。
3. 小学数学是中学数学的基础,中学数学是高中数学的基础,高中数学是大学数学的基础(你可以以此类推)。
因此,无论你的目标是什么,搞数学、用数学、还是体会数学的乐趣、满足自己从少年时就有的梦想。学有所乐、学有所用,永远是维持你动力不衰退的两个最主要的因素。

三、高等数学学什么?
好了,来看看标准大学数学的科技树:
一级:
线性代数(矩阵论),数学分析,近世代数(群环域),分别囊括了了几何、分析和代数的基础理论。别忘了还有概率论(建立在分析之上的一门基础学科)。
二级:
有了这些基础,接着是基础的基础、抽象和推广:测度论(积分的基础,当然也是概率论的基础),拓扑学(有关集合、空间、几何的一门极度重要的基础学科),泛函分析(线性代数的推广),复变函数(分析的推广),常微分方程与偏微分方程(分析的推广),数理统计和随机过程(概率论的推广),微分几何(分析和几何的结合)。
然后是一些小清新和应用学科:数值分析(算法),密码学,图形学,信息论,时间序列,图论等等。
三级:
再往上是研究生课题,往往是代数、几何和分析要一起上:微分流形、代数几何、随机动力学等等。
这个科技树的三级,和小学、初中、高中数学很相似,一层学不精通,下一层看天书。

四、如何学习
4.1 适量做题
千万千万千万不要狂做题。玩过战略对抗游戏的同学都知道,低级兵造几个就行了,要攒钱出高级兵才能在后期取胜,低级兵不仅攻击力低,还没有好玩的魔法,它们存在的意义在于让你有能力熬到后期。上面列举了那么多课程,你先花5年做完吉米诺维奇六本数学分析习题集,你就30岁了,后面的二级课程还没开始学呢。因此,做一些课后习题,帮助你复习、思考、维持大脑运转就行,要不断地向后学。如果完全学不懂了,返回来做习题帮自己理清头绪。
4.2 了解思想
数学的精髓不是做题的数量,而是掌握思想。每一个数学分支都有自己的主线思想和方法论,不同分支也有相互可供对比和借鉴的思维方式。留意它,模仿它,琐碎的知识就串成了一条项链,你也就掌握了一门课。思想并不是读一本教材就能轻易了解的,你要读好几本书,了解一些应用才能体会。举两个例子:
微积分的主线有这么几条:认识到微观和宏观是有联系的,微分用来刻画事物如何变化,它把细节放大给你看,而积分用来刻画事物的整体性质;微分和积分有时是描述一个现象的不同方式,这一点你在数学分析书中可能不容易发现,但是如果学点物理,就会发现麦克斯韦方程组同时有等价的微分形式和积分形式;积分变换能够建立不同空间之间的的联系,建立空间和空间边界的联系,这就是Stokes定理:,这个公式最迟要在微分流形中你才能一窥全貌。
矩阵是空间中线性变换的抽象,线性代数这门课的全部意义在于研究如何表达、化简、分类空间线性变换算子;SVD分解不仅在应用学科用有极为广泛的亮相,也是你理解矩阵的有力工具;矩阵是有限维空间上的线性算子,对"空间"的理解不仅能让你重新认识矩阵,更为泛函分析的学习开了个好头。
4.3 渐进式迂回式学习,对比学习
很多时候,只读一本书,可能由于作者在某处思维跳跃了一下,以后你就再也跟不上了。学习数学的一个诀窍,就是你同时拿到好几本国际知名教材,相互对比着看,或者看完一本然后再看同一主题的另一本书,已经熟悉的内容跳过去,如果看不懂了,停下来思考或者做做习题,还是不懂则往后退一退,从能看懂的部分向前推进,当你看的多了,就会发现一个东西出现在很多地方,对它的理解就加深了。举两个例子:
外微分这个东西,国内有的数学分析书里可能不介绍,我第一次遇到是在彭家贵的《微分几何》里,觉得这是个方便巧妙的工具;后来读卓里奇的《数学分析》和Rudin的《数学分析原理》,都讲了这个东西,可见在西方外微分是一个基础知识。你要读懂它,可能要首先理解矩阵,明白行列式恰好是空间体积在矩阵的变换下拉伸的倍数,它是一种线性形式。最后,当你读微分流形后,将发现外微分是获得流形上的Stokes定理的工具。
点集拓扑学这个东西,搞应用用不到。但是但凡你想往深处学,这一门学科就必须要掌握,因为它提供对诸如开集、紧集、连续、完备等数学基本概念的精准刻画。往后学泛函分析、微分流形,没有这些概念你将寸步难行。首先你要读芒克里斯的旷世名著《拓扑学》,接着在读其他外国人写的书时,或多或少都会接触一些相关概念,你的理解就加深了,比如读Rudin的《泛函分析》,开始就是介绍线性拓扑空间,前面的知识你就能用上了。
4.4 建立不同学科的联系
看到一个东西在很多地方用,你对它的理解就加深了,慢慢也就能体会到这个东西的精妙,最后你会发现所有的基础学科相互交织,又在后续应用中相互帮助,切实体会到它们真的很基础,很有用。这是一种体会数学乐趣的途径。
4.5 关注应用学科
没有什么比应用更能激发你对新知识、新工具的渴望。找一些感兴趣的应用学科教材,读一读,开阔眼界,为自己的未来积累资源。以下结合自己的专业(计算机视觉)和爱好说说一些优秀的专业书籍:

学了微积分,就可以无压力阅读《费恩曼物理学讲义第一卷》,了解力、热、光、时空的奥秘;学了偏微分方程,就可以无压力阅读《费恩曼物理学讲义第二卷》,了解电的奥秘;学了矩阵论,可以买一本《计算机视觉中的多视图几何》,了解成像的奥秘,编程进行图像序列的三维重建;学了概率论的同学应该会听说过贝叶斯学派和频率学派,这两个学派的人把战场拉到了机器学习领域,成就了两本经典著作《Pattern Recognition And Machine Learning》和《The Elements of Statistical Learning》,读了它们,我被基础数学为机器学习领域提供的丰硕成果和深刻见解深深折服;读了《Ray Tracing from the Ground Up》,自己写了一个光线追踪器渲染真实场景,它的基础就是一点点微积分和矩阵......
高等数学的应用实在是太多了,如果你喜欢编程,自动化、机器人、计算机视觉、模式识别、数据挖掘、图形图像、信息论和密码学......到处都有大量模型供你玩耍,而且只需要一点点高等数学。在这些领域,你可能能发现比数学书更有趣,也更容易找到工作的目标。
4.6 找有趣的书看
数学家写的书有时是比较死板的,但是总有一些教材,它们的作者有强烈的欲望想向你展示"这个东西其实很有趣","这个东西完全不是你想的那个样子"等等,他们成功了;还有些作者,他们喜欢把一个东西在不同领域的应用,和不同东西在某一领域的应用集中展示给你看。这样的书会提供给你充足的乐趣读下去。典型代表就是国内出版的一套《图灵数学统计学丛书》,这一套书实在是太棒了,比如《线性代数应该这样学》《复分析:可视化方法》《微分方程、动力系统与混沌导论》,个人认为都是学数学必读的经典教材,非常非常有趣。

五、多读书,读好书
如果只有一句话概括如何培养数学能力,那么就是这一句:多读书,读好书。因此这一步我想单独拿出来多说两句。
想必大家都十分精通并能熟练应用小学数学。想读懂代数几何,或者退一步,想读懂信息论基础,你就要挑几本好的基础教材,最好是外国人写的,像掌握小学数学那样掌握它。不要只看一本,找三本不同作者的书,对比着看,逐行逐字看。有的地方肯定看不懂,记下来,说不定在另一本书的某个地方就从另一个角度说到了这个东西。
如果你以后还要往后学,现在看到的每一个基础定理,以后还会用到。
每一本基础书,你今天放弃,明天还要乖乖重头再来。
要像读经文一样,交叉阅读对比不同教材内容的异同。

5.1. 推荐教材(其实就是我读过的觉得好的书):
第一级:
《线性代数应该这样学》
卓里奇《数学分析(两册)》(读英文版吧,不难。有知友说这个还是不太简单,那你可以先看个国内教材,然后回过头来再看这个)
复旦大学《概率论》

第二级:
芒克里斯《拓扑学》
图灵丛书的一些分册
柯斯特利金《代数学引论》
Vapnik《统计学习理论的本质》
Rudin《数学分析原理》
Rudin《泛函分析》
Gamelin《复分析》
彭家贵《微分几何》
Cover《信息论基础》
第三级:
《微分流行与黎曼几何》
《现代几何学,方法与应用》三卷

5.2. 阅读一些科普教材
《数学是什么》
《高观点下的初等数学》
《巴赫、埃舍尔、哥德尔》
《e的故事》

5.3. 阅读各个领域最有趣、最活泼、最让你长知识、最重视应用、文笔最易懂的教材和书籍
《费恩曼物理学讲义》三册
《混沌与分形:科学的新疆界》
《微分方程、动力系统与混沌导论》
《复分析:可视化方法》

最后想说,数学是一个无底洞,会消耗掉你宝贵的青春。一无所知的你可能励志搞懂现代数学,但是多会半途却步,同时剩下的时间又不够精通另一门科学。而且即使你精通纯数学,没有几篇好文章也并不容易找工作。
我的建议是在阅读数学的过程中开拓眼界,纯数学和应用数学学科都看看,找到感兴趣、应用广泛、工作好找(来钱)的方向再一猛扎下去成为你的事业。比如数学扎实,编程能力也强的人就很有前途。

原文地址:https://www.cnblogs.com/Riesling95/p/11259474.html

时间: 2024-10-16 10:34:55

对我启发最大的数学学习方法(转自知乎)的相关文章

黑马高强度学习下的一些学习方法

通过多个班级的教学,以及与同学们的交流,发现很多同学学不好,不是学不动,而是不会学习,从而导致一些同学学习起来吃力,甚至痛苦,所以基于个人想法,对同学们的学习作了一些个人的总结,希望有益于大家. 以下学习方法不针对所有人群使用,只是给长期在编程高压力中学习的同学们的友情帮助,如有问题或者更好的意见,请联系我(鄙人贾乐飞),进一步完善内容. 课上: 问题1: 一些同学喜欢上课勤记笔记,这是一种好的学习态度,但不是一种适合目前这种该密度学习的状况下. 说明: 由于知识的密度比较高,所以会出现一不小心

我扑在概念上,就像饥饿的人扑在面包上

不夸张地说(提示:群主要吹NB),从小到大,我最喜欢的课就是数学了,含几何.微积分.线性代数.概率论.数学老师是我的最佳暗恋对象,无论年轻小伙还是鹤发童颜.高中时曾经有位聪明的帅哥问过数学老师(一位鹤发童颜的老头),觉得我们班上数学概念掌握的最好的人是谁,老师略一沉吟答:应该是xxx了.因为数学概念掌握得清晰,数学考试经常第一,所以精通N国语言及素描的文科才女也会与我促膝长谈,谦虚地询问我有关数学学习方法的事.我能有什么方法,我只有感觉啊(逃). 无论学什么,概念和定义都是理论的基石,勿在浮沙之

13—14年的成长历程

一年过去了,自己又长了一岁,时间过去了,回首自己一年的历程,收获一下自己这的辛勤劳作吧. 一.计算机 从去年的数据库的视频,独自敲的第一次机房收费系统,软工视频及文档,到UML的学习,就告别了2013. 随即又开始了C++(等级考试),C#的学习,由于已经学过Vb,而且这些语言都有共同点,所以学起来不是很难,认真看了几遍书,做了几套题,等级考试就过了.之后学习了C#语言,为的是在学设计模式时,敲代码要用.23个设计模式主要还是围绕着那几个原则来实现的,各有各的特点,各有各的适用范围.当时也只是对

谷山丰的一生

Yutaka Taniyama and his time 第一部分 谈及谷山丰的一生,我们首先要追溯到上个世纪六十年代中后期.值得注意的是,那时日本的情况与现在完全不同,更不能与现在甚至那时的美国和欧洲相比.“污染”还没有成为像现在这样家喻户晓的词汇,在天晴日丽的时候,从东京市中心甚至可以看到向西70公里外的富士山在朝阳中皑皑的山顶或是晚霞中的巍巍的轮廓.伴随着战争的灾难与离别的年代已成为过去,但并没有被忘记,至少不再忍受饥饿.整个国家开始变得朝气蓬勃而充满希望,尽管依然贫穷.这一点无论在整体还

深度学习方法(十):卷积神经网络结构变化——Maxout Networks,Network In Network,Global Average Pooling

技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入. 最近接下来几篇博文会回到神经网络结构的讨论上来,前面我在"深度学习方法(五):卷积神经网络CNN经典模型整理Lenet,Alexnet,Googlenet,VGG,Deep Residual Learning"一文中介绍了经典的CNN网络结构模型,这些可以说已经是家喻户晓的网络结构,在那一文结尾,我提到"是时候动一动卷积计算的形式了",原因是很多工作证明了,在基本的CNN卷积计算模式之外,很多简

重磅 | MIT与谷歌专家合著论文:机器学习和神经科学的相互启发与融合(附论文)

本文经机器之心(微信公众号:almosthuman2014)授权转载,禁止二次转载. 选自 biorxiv.org 作者:Adam Henry Marblestone, Greg Wayne, Konrad P Kording 机器之心编译 参与:李亚洲,微胖,Gabrielle,杜夏德,盛威,夏梦,黄清纬 引言:MIT 媒体实验室的 Adam H. Marblestone 与来自谷歌 DeepMind 的 Greg Wayne 等三人合著了一篇论文,其中提到,机器学习最初受到了神经科学的启发,

[读书笔记]数学之美里的机器学习

这几天陆陆续续把吴军博士的<数学之美>看完了. 整体来说,<数学之美>是一本非常适合于数学不好的人入门机器学习和理解计算机算法原理的科普书.作者结合他多年搞研究和在GOOGLE的经验,把他所理解的机器学习/自然语言处理的发展史一一得梳理了出来,颇有提纲挈领的功效. 在看完这本书后,可以按着里面的线索再去搜相关资料来看,比以前直接上手就看数据挖掘.算法啥的靠谱多了.作者在书里多次推崇[简单的数学模型可以做大事],[换个思路],[做搜索的人要经常研究一下不好的结果/异常值分析],[道]

条件随机场(CRF) - 4 - 学习方法和预测算法(维特比算法)

声明: 1,本篇为个人对<2012.李航.统计学习方法.pdf>的学习总结,不得用作商用,欢迎转载,但请注明出处(即:本帖地址). 2,由于本人在学习初始时有很多数学知识都已忘记,所以为了弄懂其中的内容查阅了很多资料,所以里面应该会有引用其他帖子的小部分内容,如果原作者看到可以私信我,我会将您的帖子的地址付到下面. 3,如果有内容错误或不准确欢迎大家指正. 4,如果能帮到你,那真是太好了. 学习方法 条件随机场模型实际上是定义在时序数据上的对数线性模型,其学习方法包括极大似然估计和正则化的极大

数学的奇妙世界(1)- 引言和线性代数

0. 背景 在这个学校里面遇到了本科是学习统计学的小猪,给我打开了数学的大门,前段时间想着自己机器学习和视觉上一直跌跌撞撞,除了因为去年闹眼病搞得今年有空就睡觉外,还有一点就是自己不想看到数学,前几天自己在京东趁着打折给自己买了一本<陶哲轩教你聪明解数学>,看完前言和第一章仿佛开了天眼, 15 岁天才对于数学的理解可以给我这个 15*2 的学沫启蒙,顺便前言中提到了<如何解题>,让我对另一本早已买来的懵懵懂懂的书籍有了新的认识. 跟着陶哲轩老师的思路自己"在老师后面&qu