leetcode:72. 最小编辑距离

题目描述:

给定两个单词?word1 和?word2,计算出将?word1?转换成?word2 所使用的最少操作数?。

你可以对一个单词进行如下三种操作:

插入一个字符
删除一个字符
替换一个字符
示例?1:

输入: word1 = "horse", word2 = "ros"
输出: 3
解释:
horse -> rorse (将 ‘h‘ 替换为 ‘r‘)
rorse -> rose (删除 ‘r‘)
rose -> ros (删除 ‘e‘)
示例?2:

输入: word1 = "intention", word2 = "execution"
输出: 5
解释:
intention -> inention (删除 ‘t‘)
inention -> enention (将 ‘i‘ 替换为 ‘e‘)
enention -> exention (将 ‘n‘ 替换为 ‘x‘)
exention -> exection (将 ‘n‘ 替换为 ‘c‘)
exection -> execution (插入 ‘u‘)

# -*- coding: utf-8 -*-
# @Time         : 2019-09-22 16:51
# @Author       : Jayce Wong
# @ProjectName  : job
# @FileName     : 72-editDistance.py
# @Blog         : https://blog.51cto.com/jayce1111
# @Github       : https://github.com/SysuJayce

class Solution:
    """
    从word1->word2,对于word1的每个字符,可以有插入、删除、替换三种操作。
    碰到这种题我们应该先想到的是这是一道可以用动态规划解决的问题,因为我们是要从一个复杂的问题中
    求解一个最优值,而这个复杂问题可以分解成多个子问题。例如,我们已经将word1[:-1]到word2的最小
    编辑距离找到了,那么再计算word1->word2的编辑距离的时候就会变得容易许多。

    既然已经知道要用到动态规划,那么动态规划的解题步骤就是先找出状态转移方程,然后对状态进行初始化

    假设dp[i][j]代表将word1[:i] -> word2[:j]所需的最小编辑距离,那么当我们已知dp[i-1][j-1]
    的时候,要求dp[i][j]的话可以有以下两种情况:
    1. word1[i - 1] == word2[j - 1]:
        这种情况我们不需要对word1[i-1]做任何操作,等价于dp[i-1][j-1]
        即:dp[i][j] = dp[i-1][j-1]
    2. word1[i - 1] != word2[j - 1]:
        这时候我们要想到,我们已经用一个二维的状态矩阵保存了不同情况下的最优值,应该要想办法利用已
        知的最优值来找到当前状态的最优值。

        a) 删除
        由于我们已知dp[i - 1][j],这代表了将word1[: i - 1]->word2[: j]的最小编辑距离,
        如果我们先将word1[: i - 1]->word2[: j],然后将word1[i - 1]删除,那么就可以实现
        word1[:i] -> word2[:j].
        因此,dp[i][j] = dp[i - 1][j] + 1;
        b) 插入
        由于我们已知dp[i][j - 1],这代表了将word1[: i]->word2[: j - 1]的最小编辑距离,
        如果我们先将word1[: i]->word2[: j - 1],然后再在word1[: i]后面增加word2[j - 1]
        那么就可以实现word1[:i] -> word2[:j]。
        因此,dp[i][j] = dp[i][j - 1] + 1
        c) 替换
        由于我们已知dp[i - 1][j - 1],这代表了将word1[: i - 1]->word2[: j - 1]的
        最小编辑距离,如果我们先将word1[: i - 1]->word2[: j - 1],然后再将word1[i]替换成
        word2[j],那么就可以实现word1[:i] -> word2[:j]。
        那么也可以实现word1[:i] -> word2[:j]。
        因此,dp[i][j] = dp[i - 1][j - 1] + 1

        上述的a)b)c)都是可行的,而我们需要的是最小的编辑距离,因此就需要从上述的三种操作中选择
        最小的一种
    """
    def minDistance(self, word1: str, word2: str) -> int:
        rows = len(word1)
        cols = len(word2)
        # 初始化状态矩阵
        dp = [[0] * cols for _ in range(rows)]
        for i in range(cols):
            dp[0][i] = i
        for j in range(rows):
            dp[j][0] = j

        # 根据状态转换方程进行状态更新
        for i in range(1, rows):
            for j in range(1, cols):
                if word1[i - 1] == word2[j - 1]:
                    dp[i][j] = dp[i - 1][j - 1]
                else:
                    dp[i][j] = 1 + min(dp[i - 1][j], dp[i][j - 1],
                                       dp[i - 1][j - 1])

        # 动态规划的最后一个状态就是我们需要的结果
        return dp[-1][-1]

原文地址:https://blog.51cto.com/jayce1111/2440104

时间: 2024-10-07 16:14:15

leetcode:72. 最小编辑距离的相关文章

Levenshein distance最小编辑距离算法实现

Levenshein distance,中文名为最小编辑距离,其目的是找出两个字符串之间需要改动多少个字符后变成一致.该算法使用了动态规划的算法策略,该问题具备最优子结构,最小编辑距离包含子最小编辑距离,有下列的公式. 其中d[i-1,j]+1代表字符串s2插入一个字母,d[i,j-1]+1代表字符串s1删除一个字母,然后当xi=yj时,不需要代价,所以和上一步d[i-1,j-1]代价相同,否则+1,接着d[i,j]是以上三者中最小的一项. 算法实现(Python): 假设两个字符串分别为s1,

C#实现Levenshtein distance最小编辑距离算法

Levenshtein distance,中文名为最小编辑距离,其目的是找出两个字符串之间需要改动多少个字符后变成一致.该算法使用了动态规划的算法策略,该问题具备最优子结构,最小编辑距离包含子最小编辑距离,有下列的公式. 其中d[i-1,j]+1代表字符串s2插入一个字母才与s1相同,d[i,j-1]+1代表字符串s1删除一个字母才与s2相同,然后当xi=yj时,不需要代价,所以和上一步d[i-1,j-1]代价相同,否则+1,接着d[i,j]是以上三者中最小的一项. 算法实现(C#): 假设两个

字符串最小编辑距离

首先介绍一下概念 字符串编辑距离(Edit Distance),是俄罗斯科学家 Vladimir Levenshtein在1965年提出的概念,又称 Levenshtein距离,是指两个字符串之间,由一个转成另 一个所需的最少编辑操作次数.许可的编辑操作包括 1.将一个字符替换成另一个字符 2.插入一个字符 3.删除一个字符 可以借鉴LCS的思想,采用动态规划,维护一个c[m][n]二维数组,m,n的值分别为字符串1的长度+1,字符串2的长度+1. c[0][0]表示的是二空串的编辑距离,明显为

poj3356 字符串的最小编辑距离 dp

poj3356 字符串的最小编辑距离  dp AGTC Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10895   Accepted: 4188 Description Let x and y be two strings over some finite alphabet A. We would like to transform x into y allowing only operations given bel

poj3356 AGTC(经典DP最小编辑距离)

题目意思: 给出两个字符串X,Y,求出从X-->Y的最小操作次数,只可以删除,添加,修改一个字符. http://poj.org/problem?id=3356 题目分析: /** *x,y:是字符串 *动态规划最小编辑距离, *dp[i][j]表示取x的前i个字符和y的前j个字符操作的最小次数. *dp[0][j]=j:取x的前0个字符和y的前j个字符操作的 *最小次数为(j),只能添加到x * *dp[i][0]=i:取x的前i个字符和y的前0个字符操作的 *最小次数为(i),只能删除x *

最小编辑距离(Minimum edit distance)

最小编辑距离是计算欧式距离的一种方法,可以被用于计算文本的相似性以及用于文本纠错,因为这个概念是俄罗斯科学家 Vladimir Levenshtein 在1965年提出来的,所以编辑距离又称为Levenshtein距离. 简单的理解就是将一个字符串转换到另一个字符串所需要的代价(cost),付出的代价越少表示两个字符串越相似,编辑距离越小,从一个字符串转换到另一个字符串简单的归纳可以有以下几种操作,1.删除(delete)2.插入(insert)3.修改(update),其中删除和插入的代价可以

最小编辑距离

概念 编辑距离(Edit Distance),又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数.许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符. 例如将kitten一字转成sitting: sitten (k→s) sittin (e→i) sitting (→g) 俄罗斯科学家Vladimir Levenshtein在1965年提出这个概念. 算法 动态规划经常被用来作为这个问题的解决手段之一. 具体步骤是:1. 建立个m*n的

Minimum edit distance(levenshtein distance)(最小编辑距离)初探

最小编辑距离的定义:编辑距离(Edit Distance),又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数.许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符. 例如将kitten一字转成sitting: sitten(k→s) sittin(e→i) sitting(→g) 俄罗斯科学家Vladimir Levenshtein在1965年提出这个概念. Thewords `computer' and `commuter' are

19.2.13 [LeetCode 72] Edit Distance

Given two words word1 and word2, find the minimum number of operations required to convert word1 to word2. You have the following 3 operations permitted on a word: Insert a character Delete a character Replace a character Example 1: Input: word1 = "h