1058 N的阶乘的长度(51NOD基础题)

1058 N的阶乘的长度(51NOD基础题)

基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题

输入N求N的阶乘的10进制表示的长度。例如6! = 720,长度为3。

Input

输入N(1 <= N <= 10^6)

Output

输出N的阶乘的长度

Input示例

6

Output示例

3
/*
n! 的长度
len  = (int)log10(n!) + 1 ;
-->> len = log10(1) + log10(2) + .... + log10(n) + 1 ;  

*/
#include <cstdio>
#include <cmath>

int main(){
    int n ;
    while(~scanf("%d" , &n)){
        double len = 1 ;
        for(int i=1 ; i<=n ; i++){
            len += log10(i) ;
        }
        printf("%d\n" , (int)len) ;
    }
    return 0 ;
}
时间: 2024-10-13 11:48:05

1058 N的阶乘的长度(51NOD基础题)的相关文章

51nod 1058 N的阶乘的长度 (非暴力)

1058 N的阶乘的长度 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 取消关注 输入N求N的阶乘的10进制表示的长度.例如6! = 720,长度为3. Input 输入N(1 <= N <= 10^6) Output 输出N的阶乘的长度 Input示例 6 Output示例 3 分析:(int)log10(100)=2,(int)log10(1000)=3,(int)log10(500)=2.所以不难发现和证明log10(x)+1=x的长度. 那么

51nod 1058 N的阶乘的长度 位数公式

1058 N的阶乘的长度基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注输入N求N的阶乘的10进制表示的长度.例如6! = 720,长度为3.Input输入N(1 <= N <= 10^6)Output输出N的阶乘的长度Input示例6Output示例3思路:位数公式 则有: 循环遍历即可 代码: 1 #include <bits/stdc++.h> 2 using namespace std; 3 int main() { 4 ios::s

1057 N的阶乘(51NOD基础题)

1057 N的阶乘(51NOD基础题) 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 输入N求N的阶乘的准确值. Input 输入N(1 <= N <= 10000) Output 输出N的阶乘 Input示例 5 Output示例 120 思路:由于最终结果比较大正常的 LL 肯定是不行的 , 所以仿照 10 进制数 构造出 10000 进制数 , 对万进制数的操作仿照十进制 #include <cstdio> #include <cstri

1058 N的阶乘的长度

1058 N的阶乘的长度 基准时间限制:1 秒 空间限制:131072 KB 输入N求N的阶乘的10进制表示的长度.例如6! = 720,长度为3. Input 输入N(1 <= N <= 10^6) Output 输出N的阶乘的长度 Input示例 6 Output示例 3 * n!的长度等于log10(n!) import java.util.*; public class Main { public static void main(String[] args) { // TODO Au

1012 最小公倍数LCM(51NOD基础题)

1012 最小公倍数LCM(51NOD基础题) 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 输入2个正整数A,B,求A与B的最小公倍数. Input 2个数A,B,中间用空格隔开.(1<= A,B <= 10^9) Output 输出A与B的最小公倍数. Input示例 30 105 Output示例 210 #include <cstdio> #define LL long long LL n , m ; LL result ; // 递归实现辗

1011 最大公约数GCD(51NOD基础题)

1011 最大公约数GCD(51NOD基础题) 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 输入2个正整数A,B,求A与B的最大公约数. Input 2个数A,B,中间用空格隔开.(1<= A,B <= 10^9) Output 输出A与B的最大公约数. Input示例 30 105 Output示例 15 /* <1> 循环实现 辗转相除法 <2> 递归实现 辗转相除法 */ #include <cstdio> #defi

1008 N的阶乘 mod P(51NOD基础题)

1008 N的阶乘 mod P(51NOD) 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 输入N和P(P为质数),求N! Mod P = ? (Mod 就是求模 %) 例如:n = 10, P = 11,10! = 3628800 3628800 % 11 = 10 Input 两个数N,P,中间用空格隔开.(N < 10000, P < 10^9) Output 输出N! mod P的结果. Input示例 10 11 Output示例 10 #includ

【51NOD-0】1058 N的阶乘的长度

[算法]数学 [题解]n!的位数相当于ans=log10(n!)上取整,然后就可以拆出来加了. 可以用log10(i)或log(i)/log(10) 阶乘好像有个斯特林公式-- #include<cstdio> #include<cmath> using namespace std; int main() { int n; scanf("%d",&n); long double ans=0; for(int i=1;i<=n;i++)ans+=lo

51nod基础题感触(1005大数加法)

这篇就作为算法学习这块的第一篇文章啦!之前一直想来写一下博客来着,但是自己太懒了,建模比赛后想多休息(玩)一会儿(很长时间),一直没写.最近总算是下定决定了! “的确是要开始写一写最近自己做题的感受了!”(超认真的!) 直入正题!(由于才正式开始学习,理解有不足之处还请指正!) 首先,遇到这样的题,如果不限制语言的话,抱着能快则快的心态,我们就用强大的Python就行了.实现起来也是十分地的简单,在这里,我就直接上代码啦!(这里我用的是Python3.6) a=input()#输入,这时候的a实