二分图最大匹配的可行边和必须边

由于是在OneNote上事先写好的,所以直接复制过来,但是发现怎么效果这么差...TAT...貌似把图片拖到新的网页里看效果还是可以的...

By NeighThorn

时间: 2024-11-05 16:31:41

二分图最大匹配的可行边和必须边的相关文章

二分图行列匹配与最大匹配必须边

hdu1287 题意:在棋盘上放置车,要求车不能相互攻击,即要求车要在不同的行和列,二分图行列匹配 但是又问,那些点如果不放置车,就不能形成最大匹配,即哪些边是最大匹配的必须边 判断是否是最大匹配的必须边,只要删除该边之后做匹配,将匹配的个数与原先的个数比较就知道该边是不是最大匹配的必须边 1 #include <stdio.h> 2 #include <string.h> 3 const int N = 100 + 10; 4 int Map[N][N]; 5 int n,m,k

POJ 2536 之 Gopher II(二分图最大匹配)

Gopher II Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 6675   Accepted: 2732 Description The gopher family, having averted the canine threat, must face a new predator. The are n gophers and m gopher holes, each at distinct (x, y) coor

SPOJ AMR12A The Black Riders --二分+二分图最大匹配

题意:有n个人,m个洞.每个洞能容纳一个人,每个人到每个洞需要花费一些时间.每个人到达一个洞后可以花C的时间来挖一个洞,并且最多挖一个洞,这样又能多容纳一人.求能使至少K个人进洞的最短时间. 解法:看到n个人和m个洞,并且人要进洞容易想到二分匹配,又是求极值的问题,应该是最大匹配.由于直接求极值不好求,可以将求极值问题转化为判定问题,即二分最短时间,然后判定能否达到.判定时,如果i到j的时间小于等于mid,就将i和j连一条边,如果T[i][j]+C <= mid 说明还来得及挖洞,将i和j+m连

匈牙利算法dfs模板 [二分图][二分图最大匹配]

最近学了二分图最大匹配,bfs模板却死活打不出来?我可能学了假的bfs 于是用到了dfs模板 寻找二分图最大匹配的算法是匈牙利算法 匈牙利算法的主要程序是寻找增广路 寻找增光路是过程是:从一个未经配对的点出发,历经未配边.匹配边.未配边.匹配边.未配边....最终到达一个未配点的过程,只要把路径中的未配边和匹配边的“身份”对调,匹配就加一了.这就是一个寻找增广路的过程,通过不断寻找增广路,可以找到最大的匹配. 1 #include<cstdio> 2 #include<cstring&g

图论——LCA、强联通分量、桥、割顶、二分图最大匹配、网络流

A: 交通运输线 时间限制: 5 Sec  内存限制: 128 MB 题目描述 战后有很多城市被严重破坏,我们需要重建城市.然而,有些建设材料只能在某些地方产生.因此,我们必须通过城市交通,来运送这些材料的城市.由于大部分道路已经在战争期间完全遭到破坏,可能有两个城市之间没有道路.当然在运输线中,更不可能存在圈. 现在,你的任务来了.给你战后的道路情况,我们想知道,两个城市之间是否存在道路,如果存在,输出这两个城市之间的最短路径长度. 输入 第一行一个整数Case(Case<=10)表示测试数据

POJ 2226二分图最大匹配

匈牙利算法是由匈牙利数学家Edmonds于1965年提出,因而得名.匈牙利算法是基于Hall定理中充分性证明的思想,它是二部图匹配最常见的算法,该算法的核心就是寻找增广路径,它是一种用增广路径求二分图最大匹配的算法. #include<stdio.h> #include<string.h> #include<stdlib.h> int n1,n2; char map[1005][1005]; //数组开大点 int mapx[1005][1005],mapy[1005]

【Codevs1922】骑士共存问题(最小割,二分图最大匹配)

题意: 在一个n*n个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘上某些方格设置了障碍,骑士不得进入. 对于给定的n*n个方格的国际象棋棋盘和障碍标志,计算棋盘上最多可以放置多少个骑士,使得它们彼此互不攻击. n<=200,m<=n^2 思路:经典的二分图最大匹配问题,采用黑白点染色的思想. 如果按照相邻点黑白不同染色,可以发现每次跳到的点必定与现在所在点不同色,二分图最大匹配即可. 这里用最小割来解决,因为不能允许任何黑白点之间的任何一条边有流量,符合最小割的思想. 1

POJ2239 Selecting Courses(二分图最大匹配)

题目链接 N节课,每节课在一个星期中的某一节,求最多能选几节课 好吧,想了半天没想出来,最后看了题解是二分图最大匹配,好弱 建图: 每节课 与 时间有一条边 1 #include <iostream> 2 #include <cstdio> 3 #include <cmath> 4 #include <cstring> 5 #include <algorithm> 6 #include <vector> 7 using namespa

二分图最大匹配总结

hdoj1528 二分匹配模版: 代码: 1 #include<stdio.h> 2 #include<iostream> 3 #include<string.h> 4 #include<algorithm> 5 #include<math.h> 6 using namespace std; 7 #define N 220 8 9 int n, maps[N][N], vis[N], used[N]; 10 11 struct node 12 {