形态学滤波:(1)腐蚀与膨胀 (2)开运算,闭运算,形态学梯度,顶帽,黑帽

一、形态学概述

  图像处理中的形态学一般指的是数学形态学。

  数学形态学是一门建立在格论和拓扑学基础之上的图像分析学科,是数学形态学图像处理的基本理论。其基本运算包括:二值腐蚀和膨胀,二值开闭运算,骨架抽取,极限腐蚀,击中击不中变换,形态学梯度,top-hat变换,颗粒分析,流域变换,灰值腐蚀和膨胀,灰值开闭运算,灰值形态学梯度等。

  简单来讲,形态学操作就是基于形状的一系列图像处理操作。

二、形态学滤波

(1)腐蚀与膨胀

膨胀和腐蚀能实现多种多样的功能,主要如下:

  消除噪声;

  分割(isolate)出独立的图像元素,在图像中连接相邻的元素;

  寻找图像中的明显的极大值区域或极小值区域;

  求出图像的梯度

(2)开运算,闭运算,形态学梯度,顶帽,黑帽

时间: 2024-10-21 19:22:16

形态学滤波:(1)腐蚀与膨胀 (2)开运算,闭运算,形态学梯度,顶帽,黑帽的相关文章

paper 76:膨胀、腐蚀、开、闭运算——数字图像处理中的形态学

膨胀.腐蚀.开.闭运算是数学形态学最基本的变换.本文主要针对二值图像的形态学膨胀:把二值图像各1像素连接成分的边界扩大一层(填充边缘或0像素内部的孔):腐蚀:把二值图像各1像素连接成分的边界点去掉从而缩小一层(可提取骨干信息,去掉毛刺,去掉孤立的0像素):开:先腐蚀再膨胀,可以去掉目标外的孤立点闭:先膨胀再腐蚀,可以去掉目标内的孔.以下参考论文:<数学形态学在图像处理中的应用> 二值形态学        数学形态学中二值图像的形态变换是一种针对集合的处理过程.其形态算子的实质是表达物体或形状的

Opencv3编程入门笔记(4)腐蚀、膨胀、开闭运算、漫水填充、金字塔、阈值化、霍夫变换

19      腐蚀erode.膨胀dilate 腐蚀和膨胀是针对图像中的白色部分(高亮部分)而言的,不是黑色的.除了输入输出图像外,还需传入模板算子element,opencv中有三种可以选择:矩形MORPH_RECT,交叉形MORPH_CROSS,椭圆形MORPH_ELLIPSE.Matlab中会有更多一点的模板. 例如: Mat element = getStructuringElement(MORPH_RECT,Size(15,15)); erode(srcImage,dstImage,

机器学习进阶-图像形态学变化-礼帽与黑帽 1.cv2.TOPHAT(礼帽-原始图片-开运算后图片) 2.cv2.BLACKHAT(黑帽 闭运算-原始图片)

1.op = cv2.TOPHAT  礼帽:原始图片-开运算后的图片 2. op=cv2.BLACKHAT 黑帽: 闭运算后的图片-原始图片 礼帽:表示的是原始图像-开运算(先腐蚀再膨胀)以后的图像 黑帽:表示的是闭运算(先膨胀再腐蚀)后的图像 - 原始图像 代码: 第一步:读取图片 第二步:使用cv2.MOPRH_TOPHAT获得礼帽图片 第三步:使用cv2.MOPRH_BLACKHAT获得黑帽图片 import cv2 import numpy as np # 第一步读入当前图片 img =

形态学滤波(2):开运算、闭运算、形态学梯度、顶帽、黑帽

一.开运算 开运算,就是先腐蚀后膨胀的过程 数学表达式: dst = open(src,element) = dilate(erode(src, element)) 开运算可以用来消除小物体,在纤细点处分离物体,并且在平滑较大物体的边界的同时不明显改变其面积. 二.闭运算 闭运算,就是先膨胀后腐蚀的过程 数学表达式: dst = open(src,element) = erode(dilate(src, element)) 闭运算可以用来排除小型黑洞(黑色区域) 三.形态学梯度 形态学梯度,就是

膨胀、腐蚀、开、闭

膨胀.腐蚀.开.闭运算是数学形态学最基本的变换. 本文主要针对二值图像的形态学 膨胀:把二值图像各1像素连接成分的边界扩大一层(填充边缘或0像素内部的孔): 腐蚀:把二值图像各1像素连接成分的边界点去掉从而缩小一层(可提取骨干信息,去掉毛刺,去掉孤立的0像素): 开:先腐蚀再膨胀,可以去掉目标外的孤立点 闭:先膨胀再腐蚀,可以去掉目标内的孔. 以下参考论文:<数学形态学在图像处理中的应用>

图像的腐蚀与膨胀

数字图像处理中的形态学 转自:http://blog.csdn.net/sunny3106/archive/2007/08/15/1745485.aspx (摘自某文献,因为贴图的数目有限制,后面的公式图片没有能够上,电脑重装后文档已经找不到了,囧) 一    引言        数学形态学是一门建立在集论基础上的学科,是几何形态学分析和描述的有力工具.数学形态学的历史可回溯到19世纪.1964年法国的Matheron和Serra在积分几何的研究成果上,将数学形态学引入图像处理领域,并研制了基于

【计算机视觉】形态学滤波

[计算机视觉]形态学滤波 标签(空格分隔): [图像处理] [信号处理] 版权声明:本文为博主原创文章,转载请注明出处http://blog.csdn.net/lg1259156776/. 说明:本文主要想弄清楚形态学滤波在图象处理和信号处理中的应用,图像处理中非常直观的通过腐蚀膨胀获得开闭运算的效果,而在数据实时滤波中,形态学滤波也是可以使用的. 形态学滤波基本知识 原理:在特殊领域运算形式--结构元素(Sturcture Element),在每个像素位置上与二值图像对应的区域进行特定的逻辑运

图像腐蚀、膨胀、基本原理和程序实现

图像的腐蚀与膨胀 一.原理: ⑴ 图像形态学处理的概念 数字图像处理中的形态学处理是指将数字形态学作为工具从图像中提取对于表达和描绘区域形状有用处的图像分量,比如边界.骨架以及凸壳,还包括用于预处理或后处理的形态学过滤.细化和修剪等.图像形态学处理中我们感兴趣的主要是二值图像. ⑵ 二值图像的逻辑运算 逻辑运算尽管本质上很简单,但对于实现以形态学为基础额图像处理算法是一种有力的补充手段.在图像处理中用到的主要逻辑运算是:与.或和非(求补),它们可以互相组合形成其他逻辑运算. ⑶ 膨胀和腐蚀 膨胀

【数字图像处理】图像开运算与闭运算

图像开启与闭合 图像开运算与闭运算与膨胀和腐蚀运算有关,由膨胀和腐蚀两个运算的复合与集合操作(并.交.补等)组合成的所以运算构成. 开运算与闭运算依据腐蚀和膨胀的不可逆性,演变而来.开运算:先对图像腐蚀后膨胀闭运算:先对图像膨胀后腐蚀注意:使用同一个结构元素. 图像开运算 开运算:能够去除孤立的小点.毛刺和小桥(即连通两块区域的小点),消除小物体.平滑较大物体的边界,同时并不明显改变其面积.不过这一恢复不是信息无损的,即它们通常不等于原始图像. 开运算的效果图如下图所示: 开运算总结: (1)开

图像开运算和闭运算

1.原理 图像开运算与闭运算与膨胀和腐蚀运算有关,由膨胀和腐蚀两个运算的复合与集合操作(并.交.补等)组合成的运算构成.开运算与闭运算依据腐蚀和膨胀演变而来. 1)开运算:先对图像腐蚀后膨胀. A○S= (AΘS)⊕ S 作用:用来消除小的物体,平滑形状边界,并且不改变其面积.可以去除小颗粒噪声,断开物体之间的粘连. 2)闭运算:先对图像膨胀后腐蚀 A●S= (A⊕S)Θ S 作用:用来填充物体内的小空洞,连接邻近的物体,连接断开的轮廓线,平滑其边界的同时不改变面积. 2.开运算的实现 imgP