乐观锁与悲观锁的应用场景

锁( locking )

业务逻辑的实现过程中,往往需要保证数据访问的排他性。如在金融系统的日终结算

处理中,我们希望针对某个 cut-off 时间点的数据进行处理,而不希望在结算进行过程中

(可能是几秒种,也可能是几个小时),数据再发生变化。此时,我们就需要通过一些机

制来保证这些数据在某个操作过程中不会被外界修改,这样的机制,在这里,也就是所谓

的 “ 锁 ” ,即给我们选定的目标数据上锁,使其无法被其他程序修改。

Hibernate 支持两种锁机制:即通常所说的 “ 悲观锁( Pessimistic Locking )

和 “ 乐观锁( Optimistic Locking ) ” 。

悲观锁( Pessimistic Locking )

悲观锁,正如其名,它指的是对数据被外界(包括本系统当前的其他事务,以及来自

外部系统的事务处理)修改持保守态度,因此,在整个数据处理过程中,将数据处于锁定

状态。悲观锁的实现,往往依靠数据库提供的锁机制(也只有数据库层提供的锁机制才能

真正保证数据访问的排他性,否则,即使在本系统中实现了加锁机制,也无法保证外部系

统不会修改数据)。

一个典型的倚赖数据库的悲观锁调用:

select * from account where name=”Erica” for update

这条 sql 语句锁定了 account 表中所有符合检索条件( name=”Erica” )的记录。

本次事务提交之前(事务提交时会释放事务过程中的锁),外界无法修改这些记录。

Hibernate 的悲观锁,也是基于数据库的锁机制实现。

下面的代码实现了对查询记录的加锁:

String hqlStr =

"from TUser as user where user.name=‘Erica‘";

Query query = session.createQuery(hqlStr);

query.setLockMode("user",LockMode.UPGRADE); // 加锁

List userList = query.list();// 执行查询,获取数据

query.setLockMode 对查询语句中,特定别名所对应的记录进行加锁(我们为

TUser 类指定了一个别名 “user” ),这里也就是对返回的所有 user 记录进行加锁。

观察运行期 Hibernate 生成的 SQL 语句:

select tuser0_.id as id, tuser0_.name as name, tuser0_.group_id

as group_id, tuser0_.user_type as user_type, tuser0_.sex as sex

from t_user tuser0_ where (tuser0_.name=‘Erica‘ ) for update

这里 Hibernate 通过使用数据库的 for update 子句实现了悲观锁机制。

Hibernate 的加锁模式有:

? LockMode.NONE : 无锁机制。

? LockMode.WRITE : Hibernate 在 Insert 和 Update 记录的时候会自动

获取。

? LockMode.READ : Hibernate 在读取记录的时候会自动获取。

以上这三种锁机制一般由 Hibernate 内部使用,如 Hibernate 为了保证 Update

过程中对象不会被外界修改,会在 save 方法实现中自动为目标对象加上 WRITE 锁。

? LockMode.UPGRADE :利用数据库的 for update 子句加锁。

? LockMode. UPGRADE_NOWAIT : Oracle 的特定实现,利用 Oracle 的
for

update nowait 子句实现加锁。

上面这两种锁机制是我们在应用层较为常用的,加锁一般通过以下方法实现:

Criteria.setLockMode

Query.setLockMode

Session.lock

注意,只有在查询开始之前(也就是 Hiberate 生成 SQL 之前)设定加锁,才会

真正通过数据库的锁机制进行加锁处理,否则,数据已经通过不包含 for update

子句的 Select SQL 加载进来,所谓数据库加锁也就无从谈起。

乐观锁( Optimistic Locking )

相对悲观锁而言,乐观锁机制采取了更加宽松的加锁机制。悲观锁大多数情况下依

靠数据库的锁机制实现,以保证操作最大程度的独占性。但随之而来的就是数据库

性能的大量开销,特别是对长事务而言,这样的开销往往无法承受。

如一个金融系统,当某个操作员读取用户的数据,并在读出的用户数据的基础上进

行修改时(如更改用户帐户余额),如果采用悲观锁机制,也就意味着整个操作过

程中(从操作员读出数据、开始修改直至提交修改结果的全过程,甚至还包括操作

员中途去煮咖啡的时间),数据库记录始终处于加锁状态,可以想见,如果面对几

百上千个并发,这样的情况将导致怎样的后果。

乐观锁机制在一定程度上解决了这个问题。乐观锁,大多是基于数据版本

( Version )记录机制实现。何谓数据版本?即为数据增加一个版本标识,在基于

数据库表的版本解决方案中,一般是通过为数据库表增加一个 “version” 字段来

实现。

读取出数据时,将此版本号一同读出,之后更新时,对此版本号加一。此时,将提

交数据的版本数据与数据库表对应记录的当前版本信息进行比对,如果提交的数据

版本号大于数据库表当前版本号,则予以更新,否则认为是过期数据。

对于上面修改用户帐户信息的例子而言,假设数据库中帐户信息表中有一个

version 字段,当前值为 1 ;而当前帐户余额字段( balance )为 $100 。

1 操作员 A 此时将其读出( version=1 ),并从其帐户余额中扣除
$50

( $100-$50 )。

2 在操作员 A 操作的过程中,操作员 B 也读入此用户信息( version=1 ),并

从其帐户余额中扣除 $20 ( $100-$20 )。

3 操作员 A 完成了修改工作,将数据版本号加一( version=2 ),连同帐户扣

除后余额( balance=$50 ),提交至数据库更新,此时由于提交数据版本大

于数据库记录当前版本,数据被更新,数据库记录 version 更新为 2 。

4 操作员 B 完成了操作,也将版本号加一( version=2 )试图向数据库提交数

据( balance=$80 ),但此时比对数据库记录版本时发现,操作员 B 提交的

数据版本号为 2 ,数据库记录当前版本也为 2 ,不满足 “ 提交版本必须大于记

录当前版本才能执行更新 “ 的乐观锁策略,因此,操作员 B 的提交被驳回。

这样,就避免了操作员 B 用基于 version=1 的旧数据修改的结果覆盖操作

员 A 的操作结果的可能。

从上面的例子可以看出,乐观锁机制避免了长事务中的数据库加锁开销(操作员 A

和操作员 B 操作过程中,都没有对数据库数据加锁),大大提升了大并发量下的系

统整体性能表现。

需要注意的是,乐观锁机制往往基于系统中的数据存储逻辑,因此也具备一定的局

限性,如在上例中,由于乐观锁机制是在我们的系统中实现,来自外部系统的用户

余额更新操作不受我们系统的控制,因此可能会造成脏数据被更新到数据库中。在

系统设计阶段,我们应该充分考虑到这些情况出现的可能性,并进行相应调整(如

将乐观锁策略在数据库存储过程中实现,对外只开放基于此存储过程的数据更新途

径,而不是将数据库表直接对外公开)。

Hibernate 在其数据访问引擎中内置了乐观锁实现。如果不用考虑外部系统对数

据库的更新操作,利用 Hibernate 提供的透明化乐观锁实现,将大大提升我们的

生产力。

Hibernate 中可以通过 class 描述符的 optimistic-lock 属性结合
version

描述符指定。

现在,我们为之前示例中的 TUser 加上乐观锁机制。

1 . 首先为 TUser 的 class 描述符添加 optimistic-lock 属性:

<hibernate-mapping>

<class

name="org.hibernate.sample.TUser"

table="t_user"

dynamic-update="true"

dynamic-insert="true"

optimistic-lock="version"

>

……

</class>

</hibernate-mapping>

optimistic-lock 属性有如下可选取值:

? none

无乐观锁

? version

通过版本机制实现乐观锁

? dirty

通过检查发生变动过的属性实现乐观锁

? all

通过检查所有属性实现乐观锁

其中通过 version 实现的乐观锁机制是 Hibernate 官方推荐的乐观锁实现,同时也

是 Hibernate 中,目前唯一在数据对象脱离 Session 发生修改的情况下依然有效的锁机

制。因此,一般情况下,我们都选择 version 方式作为 Hibernate 乐观锁实现机制。

2 . 添加一个 Version 属性描述符

<hibernate-mapping>

<class

name="org.hibernate.sample.TUser"

table="t_user"

dynamic-update="true"

dynamic-insert="true"

optimistic-lock="version"

>

<id

name="id"

column="id"

type="java.lang.Integer"

>

<generator class="native">

</generator>

</id>

<version

column="version"

name="version"

type="java.lang.Integer"

/>

……

</class>

</hibernate-mapping>

注意 version 节点必须出现在 ID 节点之后。

这里我们声明了一个 version 属性,用于存放用户的版本信息,保存在 TUser 表的

version 字段中。

此时如果我们尝试编写一段代码,更新 TUser 表中记录数据,如:

Criteria criteria = session.createCriteria(TUser.class);

criteria.add(Expression.eq("name","Erica"));

List userList = criteria.list();

TUser user =(TUser)userList.get(0);

Transaction tx = session.beginTransaction();

user.setUserType(1); // 更新 UserType 字段

tx.commit();

每次对 TUser 进行更新的时候,我们可以发现,数据库中的 version 都在递增。

而如果我们尝试在 tx.commit 之前,启动另外一个 Session ,对名为 Erica 的用

户进行操作,以模拟并发更新时的情形:

Session session= getSession();

Criteria criteria = session.createCriteria(TUser.class);

criteria.add(Expression.eq("name","Erica"));

Session session2 = getSession();

Criteria criteria2 = session2.createCriteria(TUser.class);

criteria2.add(Expression.eq("name","Erica"));

List userList = criteria.list();

List userList2 = criteria2.list();TUser user =(TUser)userList.get(0);

TUser user2 =(TUser)userList2.get(0);

Transaction tx = session.beginTransaction();

Transaction tx2 = session2.beginTransaction();

user2.setUserType(99);

tx2.commit();

user.setUserType(1);

tx.commit();

执行以上代码,代码将在 tx.commit() 处抛出 StaleObjectStateException 异

常,并指出版本检查失败,当前事务正在试图提交一个过期数据。通过捕捉这个异常,我

们就可以在乐观锁校验失败时进行相应处理

时间: 2024-10-10 14:30:31

乐观锁与悲观锁的应用场景的相关文章

浅谈Mysql共享锁、排他锁、悲观锁、乐观锁及其使用场景

浅谈Mysql共享锁.排他锁.悲观锁.乐观锁及其使用场景 Mysql共享锁.排他锁.悲观锁.乐观锁及其使用场景 一.相关名词 |--表级锁(锁定整个表) |--页级锁(锁定一页) |--行级锁(锁定一行) |--共享锁(S锁,MyISAM 叫做读锁) |--排他锁(X锁,MyISAM 叫做写锁) |--悲观锁(抽象性,不真实存在这个锁) |--乐观锁(抽象性,不真实存在这个锁) 二.InnoDB与MyISAM Mysql 在5.5之前默认使用 MyISAM 存储引擎,之后使用 InnoDB .查

[数据库事务与锁]详解七: 深入理解乐观锁与悲观锁

注明: 本文转载自http://www.hollischuang.com/archives/934 在数据库的锁机制中介绍过,数据库管理系统(DBMS)中的并发控制的任务是确保在多个事务同时存取数据库中同一数据时不破坏事务的隔离性和统一性以及数据库的统一性. 乐观并发控制(乐观锁)和悲观并发控制(悲观锁)是并发控制主要采用的技术手段. 无论是悲观锁还是乐观锁,都是人们定义出来的概念,可以认为是一种思想.其实不仅仅是关系型数据库系统中有乐观锁和悲观锁的概念,像memcache.hibernate.

乐观锁与悲观锁及应用举例

最近因为在工作中需要,学习了乐观锁与悲观锁的相关知识,这里我通过这篇文章,把我自己对这两个"锁家"兄弟理解记录下来;       - 悲观锁:正如其名,它指的是对数据被外界(包括本系统当前的其他事务,以及来自外部系统的事务处理)的修改持保守态度,因此,在整个数据处理过程中,将数据处于锁定状态.悲观锁的实现,往往依靠数据库提供的锁机制(也只有数据库层提供的锁机制才能真正保证数据访问的排他性,否则,即使在本系统中实现了加锁机制,也无法保证外部系统不会修改数据).       以常用的mys

事务的乐观锁和悲观锁

Select -forupdate语句是我们经常使用手工加锁语句.通常情况下,select语句是不会对数据加锁,妨碍影响其他的DML和DDL操作.同时,在多版本一致读机制的支持下,select语句也不会被其他类型语句所阻碍. 借助for update子句,我们可以在应用程序的层面手工实现数据加锁保护操作.本篇我们就来介绍一下这个子句的用法和功能. 从for update子句的语法状态图中,我们可以看出该子句分为两个部分:加锁范围子句和加锁行为子句.下面我们分别针对两个方面的进行介绍. 加锁范围子

深入理解乐观锁与悲观锁

在数据库的锁机制中介绍过,数据库管理系统(DBMS)中的并发控制的任务是确保在多个事务同时存取数据库中同一数据时不破坏事务的隔离性和统一性以及数据库的统一性. 乐观并发控制(乐观锁)和悲观并发控制(悲观锁)是并发控制主要采用的技术手段. 无论是悲观锁还是乐观锁,都是人们定义出来的概念,可以认为是一种思想.其实不仅仅是数据库系统中有乐观锁和悲观锁的概念,像memcache.hibernate.tair等都有类似的概念. 针对于不同的业务场景,应该选用不同的并发控制方式.所以,不要把乐观并发控制和悲

SSM(十五) 乐观锁与悲观锁的实际应用

SSM(十五) 乐观锁与悲观锁的实际应用 前言 随着互联网的兴起,现在三高(高可用.高性能.高并发)项目是越来越流行. 本次来谈谈高并发.首先假设一个业务场景:数据库中有一条数据,需要获取到当前的值,在当前值的基础上+10,然后再更新回去.如果此时有两个线程同时并发处理,第一个线程拿到数据是10,+10=20更新回去.第二个线程原本是要在第一个线程的基础上再+20=40,结果由于并发访问取到更新前的数据为10,+20=30. 这就是典型的存在中间状态,导致数据不正确.来看以下的例子: 并发所带来

oracle的乐观锁和悲观锁

一.问题引出 ① 假设当当网上用户下单买了本书,这时数据库中有条订单号为001的订单,其中有个status字段是'有效',表示该订单是有效的: ② 后台管理人员查询到这条001的订单,并且看到状态是有效的: ③ 用户发现下单的时候下错了,于是撤销订单,假设运行这样一条SQL: update order_table set status = '取消' where order_id = 001: ④ 后台管理人员由于在②这步看到状态有效的,这时,虽然用户在③这步已经撤销了订单,可是管理人员并未刷新界

【转】深入理解乐观锁与悲观锁

在数据库的锁机制中介绍过,数据库管理系统(DBMS)中的并发控制的任务是确保在多个事务同时存取数据库中同一数据时不破坏事务的隔离性和统一性以及数据库的统一性. 乐观并发控制(乐观锁)和悲观并发控制(悲观锁)是并发控制主要采用的技术手段. 无论是悲观锁还是乐观锁,都是人们定义出来的概念,可以认为是一种思想.其实不仅仅是关系型数据库系统中有乐观锁和悲观锁的概念,像memcache.hibernate.tair等都有类似的概念. 针对于不同的业务场景,应该选用不同的并发控制方式.所以,不要把乐观并发控

乐观锁vs悲观锁

一.引言 为什么需要锁(并发控制) 在并发的环境中,会存在多个用户同时更新同一条数据,这时就会产生冲突. 冲突结果: 丢失更新:一个事务的更新覆盖了其它事务的更新结果,就是所谓的更新丢失. 脏读:当一个事务读取其它完成一半事务的记录时,就会发生脏读取. 因此为了解决上述问题,引入了并发控制机制. 乐观锁(乐观并发控制)和悲观锁(悲观并发控制)是并发控制的主要手段, 其实不仅关系型数据库中有乐观锁和悲观锁的概念,像redis,memcached等都有类似的概念.所以,不要把乐观锁和悲观锁狭隘的理解

聊聊数据库乐观锁和悲观锁,乐观锁失败后重试

在写入数据库的时候需要有锁,比如同时写入数据库的时候会出现丢数据,那么就需要锁机制. 数据锁分为乐观锁和悲观锁,那么它们使用的场景如下: 1. 乐观锁适用于写少读多的情景,因为这种乐观锁相当于JAVA的CAS,所以多条数据同时过来的时候,不用等待,可以立即进行返回. 2. 悲观锁适用于写多读少的情景,这种情况也相当于JAVA的synchronized,reentrantLock等,大量数据过来的时候,只有一条数据可以被写入,其他的数据需要等待.执行完成后下一条数据可以继续. 他们实现的方式上有所